Total No. of Questions:	:	121	
--------------------------------	---	-----	--

SEAT No.:	

P1366

[Total No. of Pages: 3

[4858] - 112

T.E. (Mechanical and Automobile Engineering) COMPUTER ORIENTED NUMERICAL METHODS (2008 Pattern)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION - I

- Q1) a) Draw Flow chart for 'Successive approximation Method'. [8]
 - b) Use Simpson's 1/3 rule to evaluate using 6 strips. [8]

$$I = \int_{22}^{3.4} x^3 - 2x^2 + 7x - 5 \, dx$$

OR

- Q2) a) Draw Flow chart for Double Integration using Trapezoidal Rule. [8]
 - b) Apply Modified Newton Raphson Method to determine the root of equation [8]

 $f(x) = x^4 - 5x^3 + 9x^2 - 7x + 2$ to an accuracy of 0.001, take x1 = 0.5.

Q3) a) Draw flowchart for 'Lagrange's Interpolation'.

[8]

b) Determine y' and y" at x = 3 for following data

[8]

X	1	2	3
у	3.2	8.05	13

OR

Q4) a) Draw flowchart for 'Newton's Backward differentiation'.

[8]

b) Find f(3.5) using Newton's Forward Interpolation method.

[8]

X	3	4	5	6	7
F(x)	1.59	2.76	3.195	2.73	1.988

Q5) a) Draw Flow Chart for Gauss Siedel method.

[8]

b) Solve following set of equations using Gauss Elimination Method.

[10]

$$15X + 3Y - 2Z = 85$$

 $2X + 10Y + Z = 51$

$$X - 2Y + 8Z = 5$$

OR

Q6) a) Explain partial pivoting with example.

[6]

b) Using Gauss Siedelmethod, solve the following set of simultaneous equations up to two decimal place accuracy. [12]

$$8X + 2Y - 2Z = 8$$

$$X - 8 Y + 3Z = -4$$

$$2X + Y + 9Z = 12$$

SECTION - II

Q7) a) Explain error propagation with suitable example.

[4]

b) Explain relative error and round-off error with suitable example. [4]

c) Fit a straight line through following set of points.

[8]

	Х	1	3	5	7	9
I	у	1.5	2.8	4	4.7	6

OR

Q8) a) Draw flow chart to fit an equation $y = ab^x$ using Least Square Method. [8]

b) Fit an equation $y = ax^b$ through following set of points.

X	2000	3000	4000	5000	6000
У	15	15.5	16	17	18

[8]

- Q9) a) Draw flow chart to solve Ordinary differential equations using Modified Euler's method.[8]
 - b) Solve the equation $\frac{dy}{dx} = -2xy^2$, find y(0.4) taking step size of 0.1 using Runge Kutte 2nd order method. Given the initial condition as y(0) = 1.

OR

- Q10) a) Draw flow chart to solve simultaneous first order differential equations using RK2 method.[8]
 - b) Given $\frac{dy}{dx} = \log_{10}(x^2 + y)$, find y(0.4) with step size of 0.2, using Modified Euler's order method for accuracy of 0.001. with initial condition as y(0) = 1. [8]
- Q11) a) Draw flow chart to solve Parabolic Equation by Explicit Method. [8]
 - b) Solve the Poisson's equation $\nabla^2 = 2x^2y^2$ Over the square with $0 \le x \le 3$ and $0 \le y \le 3$, with u = 0 on the boundary and h = 1. [10]

OR

- Q12) a) Draw flow chart to solve Laplace Equation for given no of iterations.
 - b) Solve the Parabolic Equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to condition $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, u(0, t) = u(1, t) = 0 using Crank-Nicolson method, do two iterations taking h = 1/3, k = 1/36. [10]

