P1372	[Total No. of Pages : 4
Total No. of Questions: 12]	SEAT No. :

[4858] - 118

T.E. (Mechanical Engineering)

MECHATRONICS

(2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer Q.No.1 or Q.No.2, Q.No.3 or Q.No.4 and Q.No.5 or Q.No.6 from section-I and Q.No.7 or Q.No.8, Q.No.9 or Q.No.10, Q.No.11 or Q.No.12 from section-II.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of Electronic pocket Calculator is allowed.
- 6) Assume suitable data, if necessary and mention it clearly.

SECTION - I

- Q1) a) Level of liquid inside a tank is to be measured using capacitive level sensor. For this, draw the set-up and explain the principle of working.
 - b) Using a suitable block diagram explain the working of a Measurement System. [6]
 - c) A rotary potentiometer is used for measurement of angular position. The range of the potentiometer is 300° and the Potentiometer is supplied with 12 Volts. If the angular position is 40°, calculate the output voltage.

 [6]

OR

- Q2) a) Draw a suitable diagram and explain the construction of a strain gauge type load cell. Also, explain its working and list its advantages and applications.[9]
 - b) List the static and dynamic characteristics of a sensor. Also, explain any five static characteristics in detail. [9]

P.T.O.

- Q3) a) Draw suitable diagrams and explain the construction and working of the LVDT.[8]
 - b) With respect to construction, working and advantages explain Potentiometer for linear position measurement. [8]

OR

- Q4) a) Classify, in detail, the sensors for measurement of displacement. [4]
 - b) Write six distinct points of comparison between Thermocouple and RTD. [6]
 - c) Draw a suitable diagram and explain the working of Optical Encoder.

 [6]
- Q5) a) Draw suitable diagrams and explain the construction and working of 6 bit SAR type Analog to Digital Converter. [10]
 - b) A 6-bit DAC has a reference voltage of 0 to 10 V. The binary input is 101100. Find the analog output voltage. [6]

OR

- Q6) a) Explain resistance, inductance and capacitance as basic electrical elements with derivation of their transfer functions. Hence derive the transfer function of R-L-C arranged in parallel.
 [8]
 - b) Discuss the following two concepts in detail: [8]
 - i) Sample & Hold Circuit
 - ii) SCADA

SECTION - II

- Q7) a) Using a suitable diagram discuss the application of closed loop control in position control.[8]
 - b) Figure Q.7 (b) shows a block diagram. Simplify and find the transfer function: [8]

Figure Q7 (b)

Q8)	a)	Draw suitable diagram and explain the construction of open loop control system. Also, explain the working and list the advantages of open loop control. [8]		
	b)	Explain the detail, following four terms:		
		i)	Process Load	
		ii)	Process Lag	
		iii)	Dead Time	
		iv)	Control Parameter Range	
Q9)	a)	A proportional controller is used to control temperature within 50°C to 130°C with a set point of 73.5°C. The set point is maintained with 50% controller output. The offset error is corresponding to load change which causes 55% controller output. If the proportional gain is 2 find the % controller output if the temperature is 61°C. [10]		
	b)	Discuss, in detail, the effect of the P, I and D control on following transient specifications: [6]		
		i)	% Overshoot	
		ii)	Steady State Error	
		iii)	Rise Time	
			OR	
Q10)	a)	Draw a suitable block diagram and derive the transfer function of the PID controller. Also, derive the equation for the control signal, <i>u</i> , fo the controller. [10]		
	b)	Define:		
		i) Proportional Band		
		ii)	Integral Action Time	

iii) Derivative Action Time

- Q11) a) Consider two NO type push buttons switches S1 and S2, two lamps namely RED and GREEN and write the PLC ladder diagram to achieve following objectives: [12]
 - i) When S1 is pushed and S2 is not pushed RED lamp is ON and latched.
 - ii) When RED lamp is latched ON and S2 is pushed, RED lamp is De-latched and GREEN lamp is ON and Latched.
 - iii) When both the buttons are pushed or not pushed, both the lamps are OFF and Delatched.
 - b) With the help of a block diagram explain the basic structure of PLC. [6]

OR

- Q12) a) Considering suitable example, draw the ladder diagram and explain the working of: [12]
 - i) Timer
 - ii) Counter
 - b) Explain various factors to be considered for selection of PLC. [6]

