Total No. of Questions: 12]	SEAT No.:	
P3533	 [Total No	o. of Pages : 6

P3533

[4858]-1009 T.E. (Civil) (Semester - II) STRUCTURAL DESIGN - II

(2012 Pattern) (End Sem.)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- 2) Figures to the right indicate full marks.
- *3*) Use I.S 456-2000 and non programmable calculator is allowed.
- Neat figures must be drawn wherever necessary. 4)
- Mere reproduction of IS Code as answer will not be considered *5*)
- Assume suitable data if required.
- **Q1)** Answer the following:

[6]

- Why L.S.M. is more desirable than WSM a)
- Explain Ultimate load theory b)

OR

- Q2) A simply supported beam AB of span 4 with effective size 230 mm × 565 mm provided With 12 # 4 no's on tension side, Calculate its depth of neutral axis, type of section, Moment of resistance and UDL in addition to its self weight using WSM, use M20 and Fe415. [6]
- Q3) Calculate Moment of resistance by LSM for flanged section with following details: [8]
 - Width of rib = 230 mm, a)
 - effective flange width = 1300 mmb)
 - flange thickness = 120 mmc)
 - Total depth = 575 mmd)
 - clear cover = 25 mme)
 - Tension steel = 6 # 20 mmf)
 - Material = M 25 and Fe 500 g)

- Q4) A Doubly reinforced beam of size 230 mm × 540 mm over all reinforced with 12 # 2 No's on compression side and 20 # 4 No's on tension side if the effective cover on both sides is 40 mm by using LSM and M 20 and Fe 415 find M.R. of section.
 [8]
- **Q5)** Design a simply supported one way slab over a room 2.8 m × 6 m effective, carrying L.L of 4 KN/m² and F.F. of 1.5 KN/m² use M 20 and Fe 500, Draw details of Reinforcement LSM is recommended.

OR

- Q6) Design a Cantilever slab for effective span of 1.3 m carrying L.L of 3KN/m² and F.F of 1 KN/m² use M20 and Fe 415 Draw details of reinforcement LSM is recommended
 [6]
- **Q7)** Design a Continuous beam ABCD (AB = BC = CD = 3.5 m) for flexure and shear using I.S Code method for following data Use M20 and Fe415 [16]
 - a) Dead load = 12 KN/m
 - b) Live load = 16 KN/m

Show details of reinforcement in L-Section and cross section at continuous support and at mid span

OR

- Q8) a) A R.C.C. beam of 230mm × 550mm over all with clear cover of 30mm is reinforced With 3 no's of 16 # on tension side at support section find shear strength of support section if 8 mm # 2 legged stirrups are provided at 175 mm c/c use M20 and Fe415 use LSM.
 - b) A rectangular R.C.C. beam 300×700mm with effective cover 40mm is subjected to following actions. [8]
 - i) Factored B.M. = 190 KN-m
 - ii) Factored S.F. = 50 KN
 - iii) Factored Torsional moment = 20 KN-m

Design the beam for flexure and shear using M20 and Fe 415.

Q9) A R.C. Beam ABC of rectangular section is simply supported at A and C, and Continuous over support B, Span AB = BC = 3.8m the beam carries dead load (including self weight) of 20KN/m and L.L of 25 KN/m. Calculate design moments at central support B and near midspan of AB and BC after 15% redistribution of moments. Draw the design moment envelops and design the beam for flexure only Use M20 and Fe415. [18]

OR

Q10)Design a short RC Column by LSM using M20 and Fe 415 to carry a working load 900 KN and working moment of 100 KN-m about major axis bisecting the depth of column, assuming unsupported length of column as 4.2 m and both ends are fixed, also design the footing for this column Take SBC of soil as 210 KN/m² show detail design calculations and reinforcement details in plan and sectional elevation. [18]

Q11) Design a short column to carry working axial load of 800 KN and working moment of M_x=55 KN-m and M_Y=25KN-m acting about axis bisecting the depth and width of column respectively, the effective length about X-axis is 4.5 m and about Y-axis is 3.5 m. The unsupported length about both axis is 4.0m. use M20 and Fe415 steel show detailed design calculations and reinforcement details.

OR

Q12)Design a short axially loaded Short column and its footing for a residential apartment G+2 with floor to floor height 3.20 m which carries working load of 800KN, Assume SBC of Soil as 200 KN/m² use M20 and Fe 500. [16]

Chart 5: Interaction Diagram for Combined Bending and Compression Bectangular Section-Equal Reinforcement on All Sides

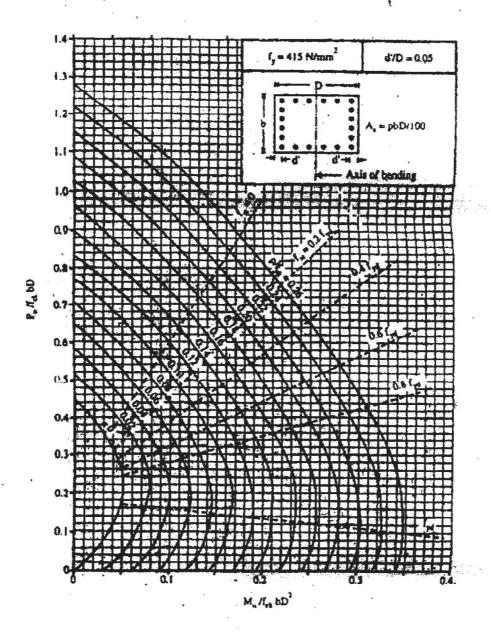


Chart &

Chart 6: Interaction Diagram for Combined Bending and Compression Rectangular Section-Equal Reinforcement on All Sides

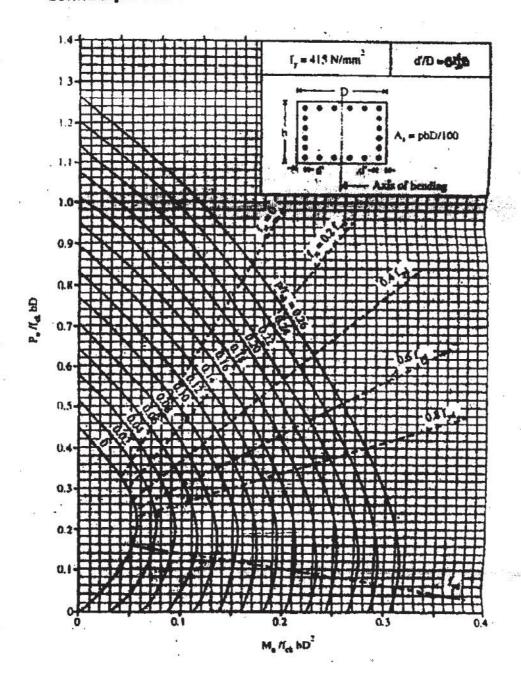
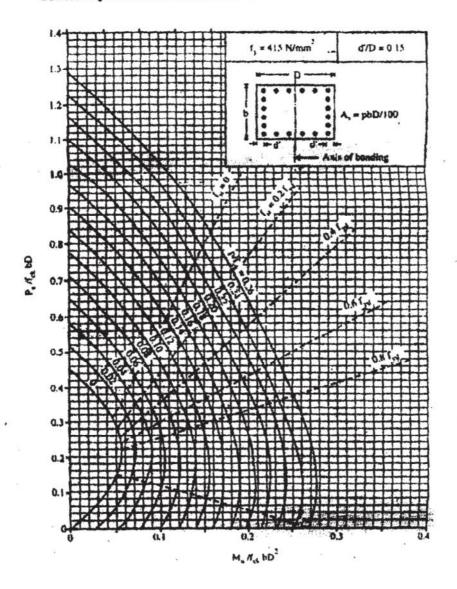



Chart 6

Chart 7: Interaction Diagram for Combined Bending and Compression Rectangular Section-Equal Reinforcement on All Sides

യയയ