Tota	l No	o. of Questions : 10]				
		- D.	SEAT No.:			
P13	542		[Total No. of Pages : 3			
		[4858] - 1086	TT \			
_		T.E. (Computer) (Semester -	,	_		
ŀ	Prin	inciples of Concurrent and Distributed	d Progr	amming	5	
		(2012 Pattern)				
		3 Hours]	[M	lax. Marks	: 70	
Insti	ructio	tions to the candidates:				
	1) 2) 3) 4)	Neat diagrams must be drawn wherever necessar Figures to the right side indicate full marks.	~ ~	<i>Q.10</i> .		
Q1)	a)	Define Computation Model. Explain specialized detail.	l Computa	ntion Mode	ls in [5]	
	b)	Explain Flynn's architectural classification sche	me with d	iagrams.	[5]	
		OR				
Q2)	a)	With reference to concurrent Java, explain the following methods use for multithreading.			ısed [5]	
		i) sleep()				
		ii) suspend ()				
		iii) wait ()				

Write an algorithm for parallel quick sort. Explain with suitable example.

iv) notify()

notify All()

v)

b)

- Q3) a) A program has 50% of the code that refers to the main memory (RAM), out of which 95% refers to the Cache. The speed of RAM is 100ns and that of Cache is 10 ns. Find the overall speed up of the processor. [5]
 - b) Consider there are three threads P, Q and R. Explain and list the possible dependencies that exist among the threads with respect to counting task dependencies. [5]

OR

Q4) Write short note on (any two):

[10]

- a) Concurrent Yacc.
- b) Parallelism with GPU.
- c) Systolic Architectures.
- **Q5)** a) Why are distributed operating systems more difficult to design than operating systems for centralized time sharing systems? [5]
 - b) Explain DCE cell configuration and list uses of DCE. [5]
 - c) Why are distributed computing systems gaining popularity? Which DCS model is popularly used now a days? Justify your answer. [7]

OR

- **Q6)** a) Explain workstation server model with diagram. Enlist advantages and disadvantages of it. [5]
 - b) List major issues in designing Distributed Operating System. Explain any two issues in detail. [5]
 - c) Suppose a component of a distributed system suddenly crashes. How will this event inconvenience the users when: [7]
 - i) The system uses the processor pool model and the crashed component is a processor in the model.
 - ii) The system uses the processor pool model and the crashed component is a user terminal.
 - iii) The system uses the workstation server model and the crashed component is a server machine.

Q7)	a)	Explain Dom O and Dom U communication in XEN.	[5]
	b)	Explain various approaches for para-virtualization with suitable diagra-	am. [4]
	c)	Explain the installation and configuration steps of XEN. OR	[7]
Q8)	a)	Differentiate between para and full virtualization.	[5]
	b)	List and explain methods for platform virtualization.	[4]
	c)	Draw a diagram showing asymmetric XEN system stating the different between sysmmetric and asymmetric virtual platform.	ces [7]
Q 9)	a)	Write a program in CUDA for matrix multiplication.	[5]
	b)	Explain various service models used in cloud computing.	[5]
	c)	Explain problem decomposition using multi GPU with an example.	[7]
		OR	
Q10)) a)	Explain the mobile computing principles.	[5]
	b)	Describe alternative thread block layouts. Explain how to calculate and Y thread indexes.	e X [5]
	c)	Explain thread scheduling in GPU with hardware view. Draw a suita diagram for scheduling cycles.	ble [7]

