Total No.	of Questions	s :	10]	l
-----------	--------------	-----	-----	---

P1341

[Total No. of Pages : 3

[4858] - 1085

T.E. (Computer)

Theory of Computation

(2012 Pattern) (Semester - I) (End Sem.)

Time: 3 Hours

[Max. Marks: 70]

Instructions to the candidates:

- 1) Answer five questions.
- 2) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data wherever necessary.
- **Q1)** a) Write regular expressions for the following languages over the alphabet

$$\sum = \{a, b\}$$

- i) All strings that do not end with 'aa'.
- ii) All strings that contain an even number of 'b' s.
- iii) All strings which do not contain the substring 'ba'.
- b) Show that for two recursive languages L1 and L2, the language L is also recursive, where L is given by [4]

 $L1 \cap L2$

OR

Q2) a) Consider the following NFA with ∈-transitions. Find ∈-closures and then convert this into NFA without ∈-moves. [6]

b) Prove using mathematical induction the following:

[4]

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$
, for all integers $n \ge 0$.

Q3) a) Find the regular expression for the set of strings recognized by the given FA. Use Arden's theorem.[6]

b) Explain, with suitable examples, any two applications of context free grammars. [4]

OR

Q4) a) Convert the following CFG into Chomksy Normal Form (CNF): [6]

$$A \rightarrow CA \mid ^$$

$$B->DB | ^{\wedge}$$

$$C -> 011 | 1$$

$$D - > 01$$

b) Prove the formula

[4]

i)
$$(r * s*)* = (r + s)*.$$

ii)
$$(ab)^* \neq a^* b^*$$
.

Q5) a) Design Turing Machines for each of the following problems: [10]

i) Given two unary numbers, m and n, display,

'G', if
$$m > n$$
, 'E', if $m = n$, 'L', if $m < n$

- ii) Given two unary numbers, find the Greatest Common Divisor (GCD) of the two numbers.
- b) Justify how a Turing Machine can simulate a General Purpose computer and vice-versa. [8]

OR

- **Q6)** a) Explain: "The halting problem in Turing Machines is undecidable". [6]
 - b) Design a Turing Machine to perform right shift operation on a binary number. [6]
 - c) Design Post Machine to accept strings that belong to the language L, given by, $L = \{a^n b^{3n} | n > = 0\}$. [6]
- **Q7)** a) Design PDA for language $L = \{a^ib^jc^k \mid i, j, k \ge 1 \text{ and } i+j=k\}$ that accepts language via [10]
 - i) Final state.
 - ii) Empty stack.
 - b) Explain the equivalence of PDA with acceptance by final state and empty stack. [6]

OR

- **Q8)** a) Write context free grammar for accepting palindrome strings (even and odd). Also design PDA for the context free grammar. [8]
 - b) Consider the PDA with following moves; obtain its equivalent CFG. [8] (q0, a, Z0) = (q0,aZ0),

$$(q0, a, a) = (q0, aa),$$

$$(q0, b, a) = (q1, \epsilon),$$

$$(q1, b, a) = (q1, \epsilon),$$

$$(q1, \varepsilon, Z0) = (q1, \varepsilon)$$

- Q9) a) What do you mean by Polynomial-time reductions? Describe any problem in detail that is solvable through polynomial time reduction. [8]
 - b) What is Satisfiability (SAT) problem? Explain with a suitable example.

[8]

OR

- **Q10)** a) Explain the Vertex Cover problem in the context of polynomial-time reductions. Justify with a suitable example. [8]
 - b) Explain the following with example. [4]
 - i) Computational complexity.
 - ii) 3-SAT problem.
 - c) Differentiate between P-class problems and NP-class problems. [4]

