Total No.	of (Questions	:	8]	
-----------	------	-----------	---	----	--

SEAT No.		
SEAI NO.	•	

P1318

[4858] - 1053

[Total No. of Pages: 4

T.E. (Electronics) (Semester - I) NETWORK SYNTHESIS (2012 Pattern)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume Suitable data if necessary.
- Q1) a) What is positive real function? Give necessary and sufficient condition for a function to be positive real.[6]
 - b) Synthesize the following network function using foster I and cauer I form;

$$Z(s) = \frac{(s+1)(s+4)}{s(s+2)}$$
 [6]

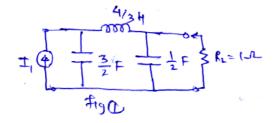
c) Synthesize the following transfer function

$$Z_{21}(s) = \frac{s^3}{s^3 + 3s^2 + 4s + 2}$$
 [8]

OR

Q2) a) Test whether
$$F(s) = \frac{s^2 + 6s + 5}{s^2 + 9s + 14}$$
 is positive real function. [6]

b) State the properties of LC driving point immitance function and also explain the reactance curve for LC Driving point immittance function.[6]

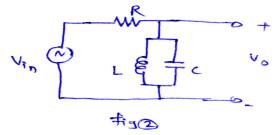

c) What is constant resistance network? And also synthesize th following voltage transfer function

$$\frac{V_2}{V_1} = \frac{S^2 + 2}{S^2 + 3S + 2}$$
 [8]

- Q3) a) State the properties of Butterworth Approximation. [4]
 - b) Write a short note on: Frequency and Impedance scaling [4]
 - Obtain a system function H(s) that exhibits a Chebyshev characteristics with not more than 1dB ripple in passband and attenuation of 20dB at W = 2 rad/sec.

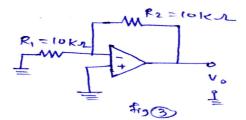
OR

- Q4) a) State the properties of Chebyshev Approximation. [4]
 - b) Determine the order of low pass butterworth filter that is to provide 40dB attenuation at a frequency which is twise of cut-off frequency. [6]
 - c) Normalized third order low pass filter is shown in fig(1). Design the corresponding high pass filter with cut-off frequency WC= 10^6 rad/sec and the impedance level of 500Ω [6]



- Q5) a) Write a short note on RC CR Transformation. [4]
 - b) Design sallen and key 2nd order butterworth low pass filter having upper cut-off frequency 1kHz. [6]
 - c) Explain the different biquad feedback topologies used in active filter designing and list the important observation. [6]

- Q6) a) Synthesize a second order Low pass filter to have a pole frequency of 2kHz and a pole Q of 10. Use sallen and key circuit based on positive feedback topology.[8]
 - b) Synthesize the following high pass filter function using RC-CR transformation


$$H(s) = \frac{k.s^2}{s^2 + s + 16}$$
 [8]

- **Q7)** a) Prove the following sensitivity relationships [6]
 - $i) S_{\sqrt{x}}^p = 2S_x^p$
 - ii) $S_x^{y+a} = \frac{y}{s+a} s_x^y$
 - iii) $S_x^{\sqrt{p}} = \frac{1}{2} S_x^p$
 - b) For the parallel LC network shown in Fig(2) find the transfer function $\frac{V_o}{I_{in}}$ and compute the sensitivities of K, Wp and Q with respect to the passive element R, L and C

- c) Explain the effect of the following op-amp characteristics on the active filter [6]
 - i) Slew rate
 - ii) CMRR
 - iii) Dynamic range

- **Q8)** a) What is gain sensitivity? Explain various factor affecting gain sensitivity? [6]
 - b) The op-amp used in the inverter of fig(3) has an input bias current of 500nA and input offset current that can range between ± 100 nA. Find the resulting maximum output offset voltage [6]

c) Write a short note on multi element deviations. [6]

