Total No. of Questions: 10]		SEAT No. :
P3513	F40#01 40#0	[Total No. of Pages : 3

[4858]-1058

T.E. (Electronics) (Semester - II) POWER ELECTRONICS AND APPLICATIONS (2012 Pattern)

Time: 3 Hours [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- **Q1)** a) What do you mean by commutation of SCR? Explain types of commutation. [4]
 - b) Draw the circuit diagram of 3Φ Full converter operating with highly inductive load and draw the following waveform for $\alpha = 30^{\circ}$. [6]
 - i) Load voltage
 - ii) Voltage across SCR
 - iii) Load current

OR

- Q2) a) Explain the effect of source inductance on the performance of 1Φ full converter with waveform. [4]
 - b) A single phase controlled thyristor bridge supplies an inductive load. Assuming that the output current is virtually constant equal to I_0 determine the following if supply voltage is 220 V & $\alpha = 60^{\circ}$. [6]
 - i) Average output voltage
 - ii) Supply RMS Current
 - iii) Supply fundamental current
 - iv) DF (Displacement Factor)
- **Q3)** a) i) Power MOSFET is best switch in PWM Inverter. Justify. [4]
 - ii) Explain Cross Conduction in Inverter.
 - b) Explain Quasi square wave inverter for inductive load. Also derive an expression for rms value of nth harmonic of output voltage and nth harmonic distortion factor. [6]

For a 1Φ bridge inverter DC input voltage is 200V and feeds resistive **Q4**) a) load of 5Ω . Determine: i) RMS output voltage The average current of each power MOSFET. ii) 3rd and 5th harmonic rms content at output. Compare 180° mode and 120° mode of the Inverter. b) [4] **Q5)** a) What is need of resonant converters? Explain the operation of zero current switching (ZCS) resonant dc-dc converter with the help of equivalent diagrams and waveforms. b) What is power Quality? Why it is required? Explain different type of power line disturbance. [6] What are the advantages of resonant converters over switched-mode c) converters? [4] OR Explain series loaded resonant (SLR) DC to DC converter. **Q6**) a) [6] What is ZVS? Explain with the circuit diagram & waveforms working of b) ZVS. State its advantages & disadvantages. [8] Explain active filters for power conditioning. c) [4] A UPS is driving a 600W rating load which as a lagging PF of 0.8. The **Q7**) a) efficiency of the inverter is 80%. The battery voltage is 24V dc. Assume that there is separate charger for the battery. Determine: [8] i) KVA rating of the inverter ii) Wattage of the rectifier A-H rating of the battery back-up time of 30 minutes. Explain Electronic Ballast and Power electronics in capacitor charging b) applications. [8] OR **Q8)** Write short note on (any two): [16] **UPS** a) **HVDC** transmission line b)

c)

Universal motor

Q9) a)	Explain in brief Photo-voltaic energy conversion systems.		[8]
b)	Exp	lain grid connected wind energy systems.	[8]
		OR	
<i>Q10)</i> a)		lain the need of renewable energy sources. Explain the role of D converter in variable Wind energy conversion system.	C to [8]
b)	Compare Stand alone PV system and Grid connected PV system		[4]
c)	Exp	lain following terms of UPS:	[4]
	i)	Efficiency of the battery	
	ii)	Capacity of the battery	

യയയ