Total No. of	Questions	:	10]
--------------	-----------	---	-----

SEAT No.	:	

[Total No. of Pages: 3

P1357

[4858] - 1105

T.E. (I.T.) (Semester - I)

THEORY OF COMPUTATION

(2012 Pattern) (End Sem.)

Time: 2½ Hour] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicates full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Design an FA for the languages that contain strings with next-to-last symbol O. [5]
 - b) Write formal definition of NFA Λ . Also define Λ closure. [5]

OR

Q2) a) Draw an FA recognizing the regular language corresponding to give regular expression [5]

$$1(01 + 10)^* + 0 (11 + 10)^*$$

- b) Write a short note on the applications of Regular Expressions. [5]
- Q3) a) State pumping Lemma for context free languages. Also Define context free language.[5]
 - b) Construct parse trees for the strings using specified derivation format for the given grammar G. [5]

$$G = (\{S, A, B\}, \{a, b\}, P, \{S\})$$

$$P = \{S \rightarrow a B \mid b A$$

$$A \rightarrow a|aS \mid b AA$$

$$B \rightarrow b \mid b S \mid a BB \}$$

Strings:

- i) aaabbb (rightmost derivation)
- ii) aababb (leftmost derivation)

Q4) a) Define [5]

- i) Ambiguous Grammar
- ii) Regular Grammar with suitable example.
- b) Convert given CFG into Greibach Normal Form [5]

 $S \rightarrow ABA$

 $A \rightarrow aA \in$

 $B \to bB \in$

- **Q5**) a) Design a PDA which accepts only odd number of a's over $\Sigma = \{a, b\}$. Simulate PDA for the string "aabab". [9]
 - b) Define PDA and Post machine with suitable example. Compare DPDA,NPDA and CFG.[9]

OR

Q6) a) For the PDA ($\{q_0, q_1\}, \{0, 1\}, \{0, 1, z_0\}, \delta, q_0, z_0, \phi$) where δ is [9]

$$\delta(q_0, \Lambda, z_0) = (q_0, \Lambda)$$

$$\delta(q_0, 0, z_0) = (q_0, 0, z_0)$$

$$\delta(q_0, 0, 0) = (q_0, 00)$$

$$\delta(q_0, 1, 0) = (q_0, 10)$$

$$\delta(q_0, 1, 1) = (q_0, 11)$$

$$\delta(\boldsymbol{q}_{_{\!0}},\,\boldsymbol{0},\,\boldsymbol{1})=(\boldsymbol{q}_{_{\!1}},\,\boldsymbol{\Lambda}),\,\delta(\boldsymbol{q}_{_{\!1}},\,\boldsymbol{0},\,\boldsymbol{1})=(\boldsymbol{q}_{_{\!1}},\,\boldsymbol{\Lambda})$$

$$\delta(q_1, 0, 0,) = (q_1, \Lambda)$$

$$\delta(q_1, \Lambda, z_0) = (q_1, \Lambda)$$

obtain CFG accepted by the above PDA.

- b) Compare PDA and post machine. Design a post machine to accept the language $L = \{a^n b^{n+1} \mid n \ge 0\}$ [9]
- Q7) a) Construct a TM for obtaining two's complement of a given binary number. Simulate TM for any string.[8]
 - b) Write a short note on: [8]
 - i) Multi tape TM ii) Universal TM

- Q8) a) Compare FM, PDA, PM and TM with respect to language, grammar, powerfulness and example.[8]
 - b) Design a turing machine that accepts the language of all strings which contain 'aba' as a substring. [4]
 - c) Discuss categories of problems based on solvability with suitable example. [4]
- Q9) a) Write a note on each of the following:

[8]

- i) Recursively enumerable language.
- ii) Recursive language.
- iii) Recursive Functions.
- iv) Partial Recursive function.
- b) Write a short note on Encoding of Turing Machine.

[8]

OR

Q10) a) Explain post-correspondence problem.

[8]

Let $\Sigma = \{0, 1\}$ and let A & B defined as shown in the table. Find the post correspondence sequence of integers $i_1, i_2, i_3, \ldots, i_m$ for $m \ge 1$ such that $wi_1, wi_2, \ldots, wi_m = xi_1, xi_2, \ldots, xi_m$.

	A	В
i	wi	xi
1	0	000
2	01000	01
3	01	1

b) Define decidability of problem with suitable example. Describe undecidable problems for context-free Grammar. [8]

