Total No.	of Questions	:	10]
-----------	--------------	---	-------------

SEAT No. :	
------------	--

P2031

[Total No. of Pages: 4

[4858]-1019

T.E.(Common-Mechanical / Auto) NUMERICAL METHODS AND OPTIMIZATION

(2012 Pattern) (End-Semester - II)

Time : 2½ *Hours*]

[Max. Marks:70

Instructions to the candidates :-

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) What do you mean by convergence? Explain importance in brief. [2]
 - b) Solve the following set of linear simultaneous equation using Gauss elimination method. [8]

$$x + 3y + z = 10$$

$$x+2y+5z=12$$

$$4x + y + 2z = 16$$

OR

- **Q2)** a) Find the root of $log_{10} x x^2 + 2 = 0$ upto accuracy 0.01. Use false position method. [6]
 - b) Write short note on Genetic Algorithm.

[4]

- Q3) a) Write a flow chart for Bisection method for root finding. [4]
 - b) Using Gauss Seidal iteration method solve the following equation.[6]

$$x+20y+9z=-23$$

$$2x-7y-20z=-57$$

$$20x+2y+6z=28$$

Q4) a) Write short note on Simulated Annealing.

[4]

b) Write a flow chart for Thomas algorithm for tri-diagonal matrix solution.

[6]

Q5) a) The value of x and y obtained in an experiment are as follows, the law controlling them is $y = ax^b$, [8]

x	1	2	3	4	5
у	0.5	2.0	4.5	8	12.5

Find the best value of the constant a and b.

b) From the tabulated values of x and y given below prepare forward difference table. Find the polynomial passing through the points and estimate the value of y when x = 1.5. [8]

x	0	2	4	6	8
y	5	29	125	341	725

Also find the slope of curve at x = 1.5.

OR

Q6) a) Fit the exponential curve $y = ae^{bx}$ to the following data.

[8]

x	2	4	6	8	
y	25	38	56	84	

b) The velocity distribution of a fluid near a flat surface is given below.[8]

x	0.1	0.3	0.6	0.8
V = y	0.72	1.81	2.73	3.47

Where x is the distance from the surface (mm) and V is the velocity (mm/sec). Use Lagrange's interpolation polynomial to obtain the velocity at x = 0.4.

Q7) a) Draw flow chart for Simpson's 3/8th rule.

[8]

b) Find double integration of $f(x) = x^2 + y^2 + 5$ for x = 0 to 2 and y = 0 to 2 taking increment in both x and y as 0.5. Use Trapezoidal rule. [8]

OR

- **Q8)** a) Find the area under the curve on X axis. The curve passes through the following points (1.00,2.00), (1.50,2.40), (2.00,2.70), (2.50,2.80), (3.00,3.00), (3.50,2.60), (4.00,2.10). [8]
 - b) The velocity of car running on a straight road at the interval of 2 minutes is given below: [8]

Time (min)	0	2	4	6	8	10	12
Velocity (Km/hr)	0	22	30	27	18	7	0

Find the distance covered by the car using Simpson's 1/3rd rule.

- **Q9)** a) A second order ODE is transformed into first order ODE as, $\frac{dy}{dx} = z$, y(0) = 2 and $\frac{dz}{dx} = 0.5x y$, z(0) = 0. Estimate the value of y and z at x = 0.2 take h = 0.1.
 - b) Explain the step by step solution procedure for solving parabolic equations. [8]

OR

Q10)a) The relationship between x and y is given by $\frac{dy}{dx} + xy = 2$. Estimate y at x = 5.1 using 2^{nd} order Runge Kutta method. Assume y = 2 at x = 5.0. Take step size of 0.02.

b) Solve the Laplace's equation $\frac{\partial^2}{\partial^{x^2}} + \frac{\partial^2}{\partial^{y^2}} = 0$ for the square mesh shown below. [10]

XXXX