Total	No.	of	Questions	:	12]	
--------------	-----	----	-----------	---	-----	--

SEAT No.:	
-----------	--

[Total No. of Pages :4

P1516

[4759] - 17 B.E. (Civil)

ADVANCED FOUNDATION ENGINEERING

(Elective - III) (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any THREE questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Your answers will be valued as a whole.
- 5) Use of electronic pocket calculator is allowed & IS codes & IRC codes are not allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1) a) Explain the following:

[10]

- i) IS 1892-1979 provisions for subsoil explorations.
- ii) Significant depth & its guide rules.
- b) Discuss in brief different case studies for failures of foundation. [7]

OR

- **Q2)** a) Discuss the 'Geophysical Methods' in detail according to IS-1892-1979. [9]
 - b) Discuss IRC provisions for number of borings & different guidelines, for depth of exploration. [8]
- Q3) a) A square footing of 1.5M size, rests at a depth of 1.5M in 4.5M deep, saturated clay. The clay is Nc with qu = 70 kPa, LL = 60%, r_{sat} = 22 KN/m³, W = 40% & G = 2.7. Determine the safe load, which the footing can carry with a FOS = 3 against shear. Also determine the settlement. Use, Nc = 5.7, Nq = 1 & Nr = 0.
 - b) Compare the following for Raft foundation design,
 - i) Conventional Method.
 - ii) Soil line method.

[8]

- **Q4)** a) Explain the steps for 'Hansen's Method' for shallow foundation design, subjected to inclined loads. [9]
 - b) Discuss various softwares used for Geotechnical designs & explain 'Geoslope'. [8]
- **Q5)** a) How will you determine 'Qa' from a cyclic pile load test? Explain by drawing a sample graph. [6]
 - b) A square concrete pile, 30 cm in size & 5M long, subjected to a horz. load of 5 KN & a moment of 4 KN-m at GL. $E = 3.1 \times 10^6 \text{ N/cm}^2 \text{ & } \eta_b = 20 \text{ N/cm}^3$. Determine the following. [10]
 - i) Total deflection
 - ii) Total slope
 - iii) Total moment
 - iv) Total shear
 - v) Total soil Reaction.

Assume pile head free & use following coefficients, z = 0.

Ay	As	Am	Av	Ap		
2.435	-1.623	0.000	1.000	0.000		
By	Bs	Bm	Bv	Bp		
1.623	-1.750	1.000	0.000	0.000		
	OR					

Q6) a) What is LLP? How Es, T & η_h is determined for a LLP? [8]

[8]

b) Explain stepwise the 'Reese & Matlock' method.

SECTION - II

- Q7) a) A clay layer 5M thk is consolidated with the help of sand drains of 30 cm ϕ , spaced at 2.7 M c/c. Determine the influence of the drain wells on the Av. degree of consolidation at the time when the degree of consolidation in the clay without wells (Uz) would be 20%. Assume square pattern & compute the improvement in U, for the following cases,
 - i) Kr = Kz
 - ii) Kr = 5 Kz

Use following data; for Uz = 20%, $T_{\rm V} = 0.031$ Tr = 0.070U = 30%U = 35%Tr = 0.085Tr = 0.373U = 85%Tr = 0.455U = 90%[10] Explain the methods for determination of LCC of 'Under-reamed pile'. b) for following cases, [7] i) Clayey soil. Sandy soil. ii) OR Explain the steps for design of 'Sand-drains'. [9] **Q8**) a) Discuss the following tests for 'Under-reamed piles' as per IS-2911-Ptb) III-1973, [8] i) Initial test. Routine test. ii) Explain the design provisions for, [8] **Q9**) a) Well curb. i) Cutting edge. ii) Staining thickness. iii) iv) Bottom plug. Discuss the following: [9] b) i) NSD as per IRC.

OR

Lacey's criteria for NSD & grip length.

ii)

Q10)a) Explain 'Banerjee & Gangopadhyay Analysis'. [9]
b) Discuss the provisions made as per IRC for Caisson design. [8]
[4759]-17

- Q11)a) Differentiate clearly between 'Rockfill cofferdam' & 'Cellular cofferdam'w.r. to design & construction. [8]
 - b) Explain the steps for the design of 'Anchored sheet pile' using 'Free Earth Support' method. [8]

OR

- Q12)a) Discuss common types of 'Cofferdam' construction. [8]
 - b) Compute the embedment depth & pull in the anchor rod, for a sheet pile cofferdam of 6M high, retaining soil as a back fill & soil below dredgeline is same with following properties,

 $\phi = \phi' = 30^{\circ}$, C = 0, $r_{sat} = 22 \text{ KN/m}^3$, r = 19 KN/m³. Anchor rod is 1m below the top. GWT = 3M above the D.L. Use 'Free Earth Support' Method.

+ + +