Total No. of Questions : 12]		SEAT No. :
P3680	[4759]-12	[Total No. of Pages : 4

[4/59]-12 B.E. (Civil)

EARTHQUAKE ENGINEERING

(2008 Course) (Semester-I) (Elective-II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) From Section-I answer Q.1 or Q.2; Q.3 or Q.4; Q.5 or Q.6 and from Section-II answer Q.7 or Q.8; Q.9 or Q.10; Q.11 or Q.12.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Figures in bold to the right, indicate full marks.
- 4) IS 456, IS 1893, IS 13920 are allowed in the examination.
- 5) Neat diagrams should be drawn wherever necessary.
- 6) If necessary, assume suitable data and indicate clearly.
- 7) Use of electronic pocket calculator is allowed.

SECTION-I

- Q1) a) What is an earthquake? Explain in details the causes and classification of the earthquake. [8]
 - b) Explain elastic rebound theory.

[8]

OR

- Q2) a) Explain basic difference between Magnitude and intensity of earthquake with example.[8]
 - b) Classify and describe with suitable sketches the different types of waves generated by an earthquake and their effects on structures. [8]
- Q3) a) Derive general equation of SDOF System subjected to free vibration.[12]
 - b) Define vibration. What is free and Forced Vibration?

[6]

OR

Q4)	Explain the procedure for obtaining the natural frequencies for a 3 DOF s	ystem
	subjected to Free Vibration?	[18]

Q5) a) What is earthquake analysis and why we considered only horizontal forces while designing.[6]

b) A multistory building has the following data:

Plan dimension (overall) = $20m \times 15m$

[10]

Number of boys in X-direction = 4 (a) 5m each

Number of boys in Z-direction = 3 @ 5m each

Floor to floor height in Y direction = 3.2m

No. of storeys = 4 Nos.

Total height of building = 12.8m

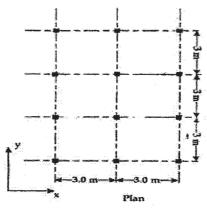
Size of column & beam $= 300 \text{mm} \times 600 \text{mm}$

Slab thickness = 150mm

Live load floor = 3 kN/sg.m.

RCC Frame infield with brick masonry

Seismic Zone - IV


Hard strata & 5% damping

Estimate the seismic forces at each floor level as per IS: 1893-2002 by seismic coefficient method. Assume suitable data if necessary.

OR

Q6) a) Explain in details the effect of configuration of the buildings on performance in an earthquake.[6]

b) The G+3 building shown in figure below is located in seismic zone IV. The floor-to-floor height is 3.5m. The building is supported on hard strata. The R.C. frames are in - filled with masonry walls. The lumped weight due to dead loads is 8 kN/m² on floors and 5 kN/m² on the roof. The floor slabs are designed for a live load of 3.5 kN/m² and the roof is designed 2 kN/m². Estimate the seismic forces at each floor level as per IS: 1893-2002 by seismic coefficient method. Assume suitable data if necessary.

SECTION-II

Q7) Design a rectangular isolated footing for a column of size 250mm \times 750 mm carrying axial characteristics load 2000 kN and reinforced with 8.12 mm Φ bars in M30 grade concrete. The allowable bearing pressure of soil is 220 kN/m² at 2m depth. Use M20 & HYSD steel. [16]

OR

- **Q8)** a) Describe the phenomenon of liquefaction. Explain the measure taken to reduce the effect of liquefaction. [8]
 - b) Explain static analysis and dynamic analysis of structure for seismic loads. [8]
- **Q9)** a) Explain Active, Passive and Hybrid control systems. [9]
 - b) State merits and demerits of base isolation. [9]

OR

Q10) a)	Explain need of isolation. Why the base isolation is effective. [10]			
b)	Exp	Explain with neat sketches		
	i)	Structural walls (shear walls).		
	ii)	Moment resisting frames.		
Q11) a)	What is retrofitting and restoration of structures? [8]			
b)	Explain strengthening of slab and wall for RCC buildings. (Draw near sketch). [8]			
		OR		
Q12) Write short notes on (Any Four):		[16]		
a)	Tur	ned mass dampers.		
b)	Tor	sional irregularity.		
c)	Agi	ng and Weathering.		
d)	Eva	luation of existing buildings.		
e)	Var	ious types of repair materials.		

••••