Total No.	of Questions	:	12]	
-----------	--------------	---	-----	--

SEAT No.:

P4625

[4759] - 24

[Total No. of Pages :3

B.E. (Civil Engineering)

FINITE ELEMENT METHOD IN CIVIL ENGINEERING (2008 Pattern) (Semester - II) (Open Elective) (401008)

Time: 3Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two Sections should be written in separate books.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of non programmable calculator is allowed.
- 5) Assume suitable data, if necessary.

SECTION - I

Q1) a) Suggest the effective node numbering scheme and hence determine minimum half band width for the plane truss as shown in Figure 1. [8]

Figure 1

b) Determine the deformations of each springs connected and supported as shown in Figure 2. [8]

Q2) Figure 3 shows a plane truss with three members. All members are of length 1000mm and cross-sectional area 600 mm². Young's modulus is 150 kN/mm². Determine unknown joint displacements of the truss. [16]

Q3) A continuous beam (Figure 4) has fixed support at node 1 and roller supports at nodes 2 and 3. Analyse the beam using finite element method and draw SFD and BMD. Take E = 200 GPa and $I = 4 \times 10^6$ mm⁴. [18]

OR

Q4) Analyse the frame shown in Figure 5 using finite element method and draw bending moment diagram.[18]

- Q5) a) Derive the differential equations of equilibrium for 3D elasticity problem and show that shear stresses are complimentary.[8]
 - b) Explain in brief state of stress and strain at a point.

[8]

OR

- **Q6)** a) Derive Saint Venant's strain compatibility conditions for 3D elasticity problem. [8]
 - b) Derive strain-displacement relationships for 3D elasticity problem. [8]

SECTION - II

- Q7) a) State the convergence criteria for the choice of the displacement function in FEM.
 - b) Coordinates of nodes of CST element are node 1(1, 2), node 2(5, 3) and node 3(4, 6). At interior point 'P' if x = 3.3 and value of $N_1 = 0.3$. Find 'y' coordinate of point 'P' and value of N_2 and N_3 . [10]

OR

- **Q8)** a) Derive the natural coordinates (ξ) of two noded bar element. [6]
 - b) Derive the stiffness matrix of two noded beam element with length L and two DOFs at each node. [10]

Q9) a) Distinguish between CST and LST elements.

- [4]
- b) Derive the element stiffness matrix for plane stress constant strain triangular (CST) element and show that sum of shape functions is equal to unity.[12]

OR

- Q10)a) Derive shape functions of eight noded hexahedron element using Lagrangian interpolation function. Use natural coordinate system (ξ,η) .
 - b) Derive shape functions of eight noded rectangular serendipity element. Use natural coordinate system (ξ, η) . [8]
- Q11) Explain strain-displacement and stress-strain relationships for triangular problem. Hence, derive necessary matrices for formulation of stiffness matrix of triangular axisymmetric element. [18]

OR

Q12) Explain strain-displacement and stress-strain relationships for 3D problem. Hence, derive necessary matrices for formulation of stiffness matrix of 3D tetrahedron element. [18]

+ + +