Total No. of Questions: 12]

P3321

SEAT No.:

[Total No. of Pages: 3

[4759] - 9

B.E. (Civil Engg.) (Semester - I) MATRIX METHODS OF STRUCTURAL ANALYSIS (2008 Pattern) (Elective - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Your answers will be valued as a whole.
- 5) Use of electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION-I

Q1) Write a note on (Any two)

[16]

- a) Ill conditioned matrix
- b) Gauss Elimination Method

OR

- Q2) a) Write a note on "Computer Algorithm & Programming aspects". [6]
 - b) Solve the following equations by Gauss Elimination Method [10]

$$3X_1 + 2X_2 + 3X_3 = 80$$

$$X_1 - 9X_2 + 2X_3 = 1$$

$$2X_1 + 3X_2 + 6X_3 = 31$$

Q3) Analyze the beam shown below by flexibility method (El is constant) [18]

Q4) Analyze the portal frame using Flexibility Method (El Constant) [18]

Q5) Analyze the truss by Flexibility Method (El Constant)

[18]

OR

Q6) Analyze the beam shown in Ex. 3 by Stiffness Method (El is Constant) [18]

SECTION-II

- **Q7)** Write a note on
 - a) Force Method of structural analysis
 - b) Effective node numbering

OR

- Q8) a) Differentiate between structure approach and member approach used in stiffness matrix method. Explain how support conditions are accounted in both approaches.[8]
 - b) Using first principles, establish relationship between local and global stiffness matrix of portal frame member. State clearly transformation matrix. [8]

[4759] - 9

- **Q9)** a) Using proper DOFs write clearly stiffness matrix equation for a member of orthogonal grid structure. Explain various terms involved in matrix equation. [9]
 - b) Explain properties and special characteristics of stiffness matrix of a structure. [9]

OR

- Q10) Stating clearly DOFs/node, explain stiffness matrix for space truss member and space frame member. In which case you need transformation matrix. Explain reason.
- **Q11)**Using structure approach, develop only stiffness matrix of grid structure for the figure shown in Ex 12. GJ = 0.4EI and uniform for all members. [18]

OR

Q12) Analyze and draw BMD for grid structure as shown below by stiffness method. [18]

