Total No. of Questions : 12]			SEAT No.:
P1460	[4550]	217	[Total No. of Pages :4

[4759] - 217

B.E. (Computer)

ADVANCED COMPUTER ARCHITECTURE

(2008 Pattern) (410449) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer to the two Sections should be written in separate answer books..
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.

SECTION - I

- **Q1)** a) Explain in brief general classification of multiprocessor based on following techniques. [12]
 - i) Degree of coupling
 - ii) Memory access
 - iii) Flynn's classification
 - iv) Feng's classification
 - b) Explain Implicit and Explicit parallelism.

OR

- **Q2)** a) What is scalable computer system? Explain various parameters affecting scalability of computer system. [10]
 - b) State and explain features of Itanium Architecture for software pipelining support. [8]
- Q3) a) Design a six bit multiplier using CSA Tree. How it can be viewed as k-stage arithmatic pipeline? With same Hardware how an n-bit multiplier can be designed? Assuming single clock cycle per processing stage, find the total No. of clock cycles for the same. [10]
 - b) Discuss the various features of SPARC Architecture. [6]

OR

[6]

Q4) a) Consider a 4 stage pipeline processor. The number of cycles needed by the four instructions I₁, I₂, I₃, I₄ in stages S₁, S₂, S₃, S₄ are as shown below

	S_1	\mathbf{S}_2	S_3	S ₄
I_1	2	1	1	1
I_2	1	3	2	2
I_3	2	1	1	3
I_4	1	2	2	2

Calculate total number of cycles needed to execute the following loop

for (i = 1 to 2)
{
$$I_1;$$
 $I_2;$
 $I_3;$
 $I_4;$

Also draw the space time diagram showing execution of all instructions through successive pipeline stages.

b) Identify All of the RAW, WAR and control Hazards in following instruction sequence. [8]

Q5) a) With suitable examples, explain the necessity of data Routing in array processors.[8]

b)	Discuss a problem of 3×3 matrix multiplication on a mesh network Obtain it's time complexity. [8]				
	OR				
Q6) a)	Explain the programming model of cray-1 vector Architecture. [8]				
b)	What is use of data Routing functions? With examples discuss the necessity of data routing in array processors. [8]				
	SECTION- II				
Q7) a)	Explain following bus arbitration algorithms in brief. [9]				
	i) RDC				
	ii) FCFS				
	iii) Polling				
b)	Discuss COWs and NOW's architecture with suitable block diagrams.[9]				
	OR				
Q8) a)	Explain with typical cluster computing Architecture the various operating system issues to be handled in the design of cluster computing system.[9]				
b)	What are different Multiprocessors Architectures? What are Network and software factors limiting performances of these systems? [9]				
Q9) a)	With suitable examples explain shared memory parallel programming. What is SPMD programming? [8]				
b)	Explain with examples the use of synchronization primitives in parallel programming. [8]				
	OR				
Q10) a)	With standard constructs and features explain how parallelism is achieved in data parallel programming? [8]				
[4759]-2	17 3				

b)	Explain use of following primitives used in parallel programming. [8]				
	i)	Send ()			
	ii)	Receive ()			
	iii)	Fork ()			
	iv)	Join()			
<i>Q11)</i> a)		h suitable example explain how parallel algorithms are written tiprocessor systems.	for [8]		
b)	-	lain in detail the steps usually followed for generating a multiprocess lication from a sequential application.	ing [8]		
		OR			
<i>Q12)</i> a)	Exp	lain the classification of parallel algorithms with suitable examples	.[8].		
b)		v parallel virtual machine acts as a programming interface for para cessing?	llel [8]		
		ф ф ф			