Total:	No.	of C	Duestions	:	12]
--------	-----	------	-----------	---	-----

SEAT No. :	
------------	--

P1449

[4759]-205

[Total No. of Pages : 3

B.E. (Computer Engineering) DESIGN & ANALYSIS OF ALGORITHMS

(2008 Course) (Semester - I) (410441)

Time: 3 Hours

[Max. Marks:100

Instructions to the candidates:

- 1) Answer three questions from section- I and three questions from section -II.
- 2) Answers of section I and section II should be written on separate answer sheets.
- 3) Figures to the right indicate full marks.
- 4) Draw neat diagram wherever necessary.
- 5) Make suitable assumptions wherever necessary.

SECTION - I

- **Q1)** a) Give Greedy Prim's minimum spanning tree algorithm. Also explain it with suitable example. [10]
 - b) Solve following recurrence:

[8]

$$t(n) - 2 t(n-1) = 3^n$$

OR

Q2) a) Write an algorithm for Knapsack greedy problem.

Find an optimal solution for following knapsack problem:

$$n=4, M=70, w=\{10, 20, 30, 40\}, P=\{20, 30, 40, 50\}$$
 [10]

- b) Write an algorithm for merge sort. State its time complexity by solving recurrence equation of merge sort. [8]
- **Q3)** a) Let n = 4 and $\{k1, k2, k3, k4\} = \{do, if, int, while\}.$

Let
$$p(1:4) = \{3, 3, 1, 1\}$$

Let
$$q(0:4) = \{2, 3, 1, 1, 1\}$$

Compute & construct OBST for above values.

[8]

	b)	State and explain the principle of dynamic programming. Name the elements of dynamic programming and give the difference between dynamic programming and Greedy method. [8]										
						OI	R					
Q4)	a)	Explain multistage graph problem with forward approach using dynamic programming with an example. [8]										
	b)	Define the Traveling Salesperson Problem. Solve the TSP problem using Dynamic programming where the edge lengths are given as: [8]										
		0	10	15	20							
		5	0	9	10							
		6	13	0	12							
		8	8	9	0							
Q5)	a)	_	lain i same.		nil backt	racking	strategy	and gi	ve con	trol al	ostractio	n for [8]
	b)	Write the control abstraction for LC-Search. Explain how Traveling Salesperson problem is solved using LCBB. [8]										
						OI	2					
Q6)	a)	Writ	te an a	algorit	hm on H	lamiltoni	an cycl	es using	Backt	rackin	g Strateg	gy. [8]
	b)	Write an algorithm to solve n queen's problem using backtracking methods. What is the time complexity of this algorithm? [8]										
SECTION - II												
Q7)	a)	State	e and	expla	iin in det	tail Cook	c's theo	rem.				[10]
	b)	Des	cribe	with e	example	followin	g class	:				
		i)	P		ii)	NP						[8]
						OI	R					
[475	(91_2)	05					2					

Q8)	a)	Prove that CNF-SAT is polynomially transformable to DHC, hence D is NP-complete.	HC [10]
	b)	Explain NP hard code generation problem.	[8]
Q9)	a)	Explain in detail with example Logarithmic time merging algorithm.	[8]
	b)	Explain with example parallel evaluation of expression.	[8]
		OR	
Q 10,) a)	Explain All pairs shortest paths. Also give parallel shortest paths algorit	hm. [8]
	b)	State and explain pointer doubling problem with algorithm, what is time complexity of this algorithm.	the [8]
Q 11,) a)	Explain Resource - Allocation algorithm with deadlock avoidance.	[8]
	b)	Explain in detail sorting and convex Hull algorithm.	[8]
		OR	
Q12) a)	Explain Image edge detection algorithm.	[8]
	b)	Explain how Huffman's technique is used for data coding.	[8]