Total No	. of Questions : 12]		SEAT No. :			
P1408		[4759] - 117	[Total No. of Pages :3			
		B.E. (Electronics)				
	ADVANCE	ED COMPUTERARC	HITECTURE			
	(2008 Cours	se) (Semester -I) (Elect	tive - II) (404205)			
Time: 3	Hours] ons to the candidate		[Max. Marks : 100			
1nstruci 1)		es: questions from each section.				
2)	-	sections should be written in	separate books.			
3)		t indicate full marks.	•			
4)	Assume suitable da	ata if necessary.				
		SECTION - I				
Q1) a)	Discuss Flynn's	s classification of parallel c	omputer in detail. [8]			
b)	Explain Handle	er's classification.	[8]			
c)	What is cluster	computing?	[2]			
		OR				
O2) a)	Discuss in detail the application of parallel processing in					
2 / /		modelling and simulation				
	,	2				
1 \	,	ng design and automation	11 12 1 201 1 1 1			
b)	Discuss and exparallelism.	xplain instruction level p	arallelism and Thread level [6]			

Q3) a) Consider the following pipeline reservation table

[10]

Clock cycles →	_		_	_		_	_
States \	0	1	2	3	4	5	6
S ₁	X		X				X
S_2				X		X	
S_3			X		X		

i) Determine latencies in the forbidden list F and collision vector C.

- Draw the state transition diagram. ii) List all simple cycles and greedy cycles. iii) iv) Determine minimum average latency (MAL). For a pipelink clock period $\tau = 20$ ns. Determine maximum throughput of the pipeline. Explain the 'Internal Forwarding Techniques'. [6] OR Explain with suitable examples the various types of hazards in a pipeline processor. How these hazards can be resolved? [8] Explain the static & dynamic branch prediction techniques used in a b) pipeline processor. [8] State the characteristics of CRAY-1 computer system. Draw and explain the computation section of CRAY-1 vector processor. [12] Explain pipeline chaining. [4] OR Explain four types of vector instructions. [8] What are vector processors? Discuss two different architectural configurations of vector processor. [8] **SECTION - II** Explain static and dynamic network topologies used in interconnection networks with proper examples. [10]
- **Q7)** a)
 - Explain matrix multiplication on SIMD architecture. [8] b)

OR

- *Q8*) a) Explain the algorithm to compute Fast Fourier Transform for SIMD architecture. [10]
 - Explain the cube interconnection network and hypercube interconnection b) network. [8]

b)

Q4) a)

Q5) a)

Q6) a)

b)

b)

Q9) a)	Give the typical architecture of MPP. Explain in detail.	[8]				
b)	Write short note on:					
	i) Cross bar switch					
	ii) Multiport memory					
	OR					
<i>Q10</i>)a)	Explain processor characteristics of multiprocessor. [8					
b)	Explain the architecture of IBM 4 processor.					
Q11) a)	What is latency hiding techniques with respect to multithreaded architecture. Elaborate any two techniques. [8]					
b)	Explain the following terms associated with message pass Synchronous and asynchronous.					
	OR					
Q12) a)	State the following terms with respect to multithreading					
	i) Latency					
	ii) Number of threads					
	iii) Context-switching overhead					
	iv) Interval between switches					
b)	What is data parallel programming. Explain in detail.	[8]				
	<u> </u>					