
Total No	o. of (Questions: 12] SEAT No.:	
P1409		[4759] - 122 [Total No. of Page	ges :3
		B.E. (Electronics)	
		PROCESS AUTOMATION	
		(2008 Pattern) (Semester - II)	
Time:3		•	:100
Instructi 1)		to the candidates: wers to the two sections should be written in separate answer - books.	
2)		t diagrams must be drawn wherever necessary.	
3)	Ass	ume suitable data, if necessary.	
		<u>SECTION - I</u>	
<i>Q1)</i> a)	E	xplain process control principles with-	[8]
	i)	Human Aided Control	
	ii)	Automatic Control	
b)	E	xplain the following control system evaluation criteria.	[8]
	i)	Minimum area	
	ii)	Quarter amplitude	
		OR	
Q2) a)	E	xplain with suitable example process control block diagram.	[8]
b)	E	xplain with suitable example following process characteristics:	[8]
	i)	Process Equation	
	ii)	Process Load	
	iii) Process lag	
	iv		
	14	, ~	

Q3) a) State the equation for a proportional integral controller. Explain a OP-AMP based proportional integral (PI) mode controller. [8]

b) Given the error shown in fig. plot a graph of proportional integral controller output as a function of time. $K_p = 5$, $K_I = 1.0 \text{ s}^{-1}$, and $P_I(0) = 20\%$.[10]

Q4) a) Explain open loop transient response method of process loop tuning.[8]

b) A proportional derivative controller has a 0.4 to 2.0V input measurement range, a 0 to 5V output, Kp = 5%/% and Kd = 0.08% per (% min). The period of the fastest expected signal change is 1.5 sec. Implement this controller with an op-amp circuit. [10]

Q5) a) Explain the following sources of valve noise

[8]

- i) Mechanical Vibration
- ii) Hydrodynamic noise
- iii) Aerodynamic noise
- b) Compare pneumatic, hydraulic and electronic systems from the process control perspective. [8]

OR

Q6) a) Explain the terms flashing and cavitation with respect to control valves. [8]

b) Define valve sizing coefficient (Cv) and state its formula? State important selection criterion of a control valve. [8]

SECTION- II

Q7)	a)	Explain combined feedback and feed forward control scheme for a heat exchanger. [8]			
	b)	Explain with block diagram the concept of a self tuning regulator. [8]			
OR					
Q8)	a)	Explain with P & I diagram air:fuel ratio control scheme for improving combustion efficiency in a steam boiler. [8]			
	b)	Explain with block diagram the concept of Model Predictive Control.[8]			
Q9)	a)	Explain inferential control scheme for a distillation column. [8]			
	b)	Draw and explain P & I diagram for surge control in a air compressor.[10]			
		OR			
Q10,) a)	Draw & explain the P & I diagram for cascade control of multiple effect evaporator. [10]			
	b)	Explain with neat diagram architecture of robot controller. [8]			
<i>Q11)</i> Explain with neat diagram following auxiliary process control components [16]					
	a)	Control Panels			
	b)	Strip Chart recorder			
	OR				
Q12) a)	Explain with block diagram Direct Digital Control System. [8]			
	b)	Explain with neat diagram working principle of a flow totalizer. [8]			
		\$ \$ \$			
	(O) 44				