Total	No.	of	Questions	:	12]	ı
--------------	-----	----	-----------	---	-----	---

SEAT No.:	
-----------	--

P1532

Time: 3 Hours]

[4759] - 44

[Total No. of Pages:5

B.E. (Mechanical)

FINITE ELEMENT METHODS

(Elective - III) (2008 Pattern) (402049) (Semester - II)

Instructions to the candidates:

[Max. Marks: 100

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Explain in details difference between Finite Element Method and Finite Difference Method.[8]
 - b) Explain the principal of Minimum potential energy used in deriving element stiffness matrix and equations. [8]

OR

Q2) a) Explain the following terms: (any two)

[8]

- i) Elimination approach
- ii) Penalty Approach
- iii) Rayleigh-Ritz Method
- iv) Von-Mises stress
- b) Describe in details the concept of Cholesky's decomposition, the banded skyline solutions to solve simultaneous equations. [8]
- **Q3)** a) Explain assembly of global stiffness matrix for the banded and skyline solutions.
 - b) A two member truss is as shown in fig. the cross sectional area of each member is 200 mm² and modulus of elasticity is 210 GPa. Determine the deflection, reactions and stresses in each of the members. Explain. [12]

P.T.O.

OR

- **Q4)** a) Explain solution of 2-Dimensional problems using Constant Strain Triangle (CST). [6]
 - b) Find the stresses and reaction at the support by modeling following system in two finite elements. Assume Modulus of Elasticity (E) = 210 GPA.

 [12]

[16]

a)
$$I = \int_{-1}^{1} \left[x^2 + \frac{1}{1+x} \right] dx$$

b)
$$I = \int_{-1}^{1} \left[x + \cos \frac{\pi x}{2} \right] dx$$

OR

Q6) a) Differentiate between higher order elements and refined mesh. [8]

b) Explain following terms: [8]

- i) Isoparametric elements
- ii) Subparametric elements
- iii) Superparametric elements
- iv) Patch test

SECTION - II

- Q7) a) Explain various steps involved in solution of 1D heat transfer problem using Finite Element Method.[8]
 - b) A composite wall consists of three materials as shown in fig. The outer temperature is $T_o = 20$ °C. Convection heat transfer takes place from inner surface of the wall with $T_\infty = 800$ °C and h = 25 W/m² °C. Determine the temperature distribution in the wall. [10]

Q8) A circular fin of 40mm diameter (d) is fixed to a base maintained at 50 °C(T₀) as shown in fig. the film is insulated on the surface except end face which is exposed to air at 25 °C. The length of the pin is 1000mm (L), the fin is made of metal with thermal conductivity of 37W/mK. If the convection heat coefficient with air is 15 W/m²K. Find the temperature distribution at 250, 500, 750 and 1000mm from base.

- **Q9)** a) Explain lumped mass matrix and consistent mass matrix with suitable example. [6]
 - b) Find un-damped natural frequencies of longitudinal vibration of the stepped bar as shown fig. using consistent mass matrix. [10]

Assume Modulus of Elasticity E = 210 GPa and Density (ρ) = 7800 kg/m³ OR

Q10) Determine the eigen values and natural frequencies of a system whose stiffness and mass matrices are given as below: [16]

$$[K] = \frac{2AE}{L} \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$$

$$[M] = \frac{\rho AE}{12} \begin{bmatrix} 6 & 1 \\ 1 & 2 \end{bmatrix}$$

Assume L = 250 mm, A = 200 mm², E = 210 GPa and ρ = 7800 kg/m³.

Q11)a) Explain process of mesh generation. Comment on free meshing and mapped meshing.[8]

b) Write various steps involved to solve 1D heat transfer problem using Finite Element Method. [8]

OR

Q12) Write short notes on (any four):

[16]

- a) FEA packages.
- b) Quality checks in meshing.
- c) Modal analysis.
- d) Equation solvers in FEA.
- e) Boundary conditions.
- f) Equation assembly.

+ + +