Total No. of Questions: 12]

SEAT No.:	
-----------	--

[Total No. of Pages: 3

P1535

[4759]-47

B.E. (Mechanical)

INDUSTRIAL HEAT TRANSFER EQUIPMENTS (2008 Course) (Semester-II) (Elective-IV) (402050 A)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers 3 questions from section-I and 3 questions from section-II.
- 2) Answers to two sections should be written in separate answer-books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Your answers will be valued as whole.
- 6) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 7) Assume suitable data, if necessary.

SECTION-I

- Q1) a) What is the difference between longitudinally finned inner tube heat exchanger and multi tube hairpin heat exchanger. Illustrate the difference by Diagrams.
 - b) Explain with the diagrams the arrangements of double pipe heat exchangers when they are arranged in series and in parallel. [9]

OR

Q2) In a shell - and - tube feed water heater, cold water at 15° C flowing at the rate of 180 kg/h is preheated to 90° C by flue gases from 150° C flowing at the rate of 900 kg/h. The water flows inside the copper tubes ($d_i = 25 \text{mm}$, $D_o = 32 \text{mm}$) having thermal conductivity $k_w = 381 \text{ W/m K}$. The heat transfer coefficients on gas and water sides are $120 \text{ and } 1200 \text{ W/m}^2\text{K}$. respectively. The fouling factor on the water side is $0.002 \text{m}^2 \text{ K/W}$. Determine the flue gas outlet temperature, the overall heat transfer coefficient based on the outside tube diameter, and the true mean temperature difference for heat transfer. Consider specific heats C_p for flue gases and water as 1.05 and 4.19 J/G.K. respectively and the total tube outside surface area as 5 m^2 . There are no fins inside or outside the tubes and there is no fouling on the gas side. [18]

Q3)	a)	Explain the major parts of a shell and tube heat exchanger with a n diagram.	neat [8]
	b)	Explain the detail steps in Kern's method for finding the shell side he transfer coefficient and pressure drop.	neat [8]
		OR	
Q4)	Bell	lain in details the shell side pressure drop calculations computed we-Delaware method. Provide diagrams to show the difference betweence, internal and window drops.	
Q5)	a)	What are the characteristics of compact heat exchangers.	[8]
	b)	What are the salient features of plate fin heat exchanger (PFHE)?	[8]
		OR	
Q6)	a)	What are different forms of individually finned tubes?	[8]
	b)	"Brazed aluminum PFHE are an obvious choice for cryoge applications" - comment.	nic [8]
		SECTION-II	
Q7)	a)	Define and describe direct contact type condenser.	[5]
	b)	Explain Horizontal in tube condenser with figure.	[5]
	c)	What is Evaporative condenser? Explain with figure.	[6]
		OR	
Q8)	a)	Explain vertical shell side condenser.	[5]
	b)	What is impingement plate? Why it is used? Explain one example w figure.	vith [5]
	c)	Draw sketch and explain in brief Spiral condenser.	[6]
Q9)	a)	Explain Direct-contact or Open Evaporative cooling tower in brief.	[8]
	b)	How cooling tower is to be maintained in good working condition.	[8]
		OR	
[475	591-4 [′]	7	

- Q10)a) The cooling used in a power plant consists of 10 big fans. The quantity of cooling water circulated through tower is 100Kg per minute and it is cooled from 35°C to 30°C. The atmosphere conditions are 35°C DBT and 25°C WBT. The air leaves tower at 30°C and 90% RH. Find capacity of each fan in cubic meter per minute. [8]
 - b) Enlist factors to be considered during selection of pump for cooling tower. [8]
- Q11)a) Explain with the help of neat sketch the construction and working of Heat pipe. [10]
 - b) Write a short note on:

[8]

- i) Working fluids used in heat pipes.
- ii) Wick structure used in heat pipes.

OR

Q12)a) State advantages of forced electronic cooling.

[6]

- b) Explain liquid cooled PCB. State its advantages and disadvantages. [6]
- c) State use of different materials for better cooling in cabinets. [6]

••••