Total No. of Questions: 12]		SEAT No. :
P4561	[4760]-94	[Total No. of Pages : 3

M.E. (Civil) (Water Resources and Environmental Engineering) CLOSED CONDUIT FLOW

(2008 Course) (Semester - II) (Elective - IV) (501612)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Figures to the right indicate full marks.
- 2) Draw neat sketches wherever necessary.
- 3) Assume suitable data if necessary.
- 4) Use of calculators is allowed.
- 5) All questions are compulsory.
- 6) Answers to the two sections must be written separately.

SECTION - I

- **Q1)** a) What are pump characteristics? Explain with neat sketches applications of pump characteristics. [8]
 - b) A pump delivers water at Q = 300 l/s and a head Dh = 40 m through a DN 400 discharge pipe measuring L = 5000 m into an overhead tank; a = 1000 m/s. The inertia moments of pump and motor are negligible. Is there a risk of liquid column separation, i.e. macro-cavitation, following pump trip? If so, what is the anticipated pressure increase? [10]

OR

- Q2) a) What do you understand by static head Manometric head and total head of a centrifugal pump? Explain Manometric, Mechanical and overall efficiencies of centrifugal pumps.[9]
 - b) Derive the expression for specific speed of centrifugal pump. [9]

O3) a) Explain Water hammer theory (elastic and rigid) for pipeline flow for hydroelectric project. Illustrate with the help of sketch variation in hydraulic gradient in a b) penstock with change of load. [8] OR **Q4**) a) What do you understand by a surge tank? Illustrate with sketches its different types. [8] b) Do we need surge tanks in tailrace tunnel? Illustrate various types with suitable sketches. [8] **Q5)** a) A rectangular power channel 20 m wide and 3 m deep supplies 120 cumecs discharge to a power plant with four turbines. Two turbines are suddenly closed. Determine magnitude and speed of surge developed. [8] b) A penstock 2000 m long and m in diameter has a surge tank 20 m diameter for a discharge of 30 cumecs. Friction factor is 0.018. Normal reservoir level is 500 m. Determine maximum and minimum water levels in the tank. [8] OR *Q6*) a) What are the functions of surge tanks? Determine the pressure rise due to sudden closure of the valve at the end of steel penstock pipe 500 m long carrying water at a velocity of 5 m/s. Assume sigma = 102. [8] b) Explain in detail differential surge tanks with expanded chambers. [8] **SECTION - II** What are various components of water distribution system? Explain with **Q7**) a) sketches. [8]

OR

Explain in detail method of pipe network analysis.

b)

[10]

Q8)	a)	Explain use of PIPE2000(KYPIPE) for design of pipeline.	[9]	
1	b)	Explain in detail contribution of computer science in planning management of water supply.	and [9]	
Q9) a	a)	Explain use of SURGE program.	[8]	
1	b)	State basic equations of transient flow analysis in closed conduits explain terms involved.	and [8]	
		OR		
Q10)	a)	Explain use of HEC_RAS(HEC2) program in managing water resources	ces. [8]	
1	b)	Explain use of Pipe 2000-SWMM program.	[8]	
Q11):	a)	Explain classification of open channel flows.	[8]	
1	b)	What are gradually varied flows explain with sketches various G profiles.	VF [8]	
OR				
Q12)	a)	What are rapidly varied flows (RVF) explain with sketches RVF.	[8]	
1	b)	Explain use of floodplain hydraulics in design of various civil engineer	ring	
		structures.	[8]	