Total No. of Questions : 8]	SEAT No. :
P4523	[Total No. of Pages : 2

[4760] - 1028

M.E. (Civil - structures) (Semester - I) ADVANCED MECHANICS OF SOLID (2013 Pattern) (Credit System)

Time: 3 Hours [Max. Marks: 50]
Instructions to the candidates:

1) Answers any five questions from the following.
2) Answers should be written in one answer book.

- 3) Figures to the right side indicate full marks.
- 1) Neat diagrams should be drawn whenever recess.
- 4) Neat diagrams should be drawn wherever necessary.
- 5) If necessary, assume suitable data.
- 6) Use of nonprogrammable electronic pocket calculator is allowed.
- 7) Use of Cell phone is prohibited in examinaion hall.
- **Q1)** a) Derive compatibility conditions in-terms of strains for 3D elasticity problem. [5]
 - b) Explain in brief stress tensor and strain tensor. [5]
- **Q2)** a) Derive the stress equilibrium equation with usual notation. [5]
 - b) State and explain in brief Generalized Hook's law for Isotropic material. [5]
- Q3) a) Derive the differential equations of equilibrium in terms of polar co-ordnates. [5]
 - b) Develop the relationship between the Cartesian and polar coordinates for two dimensional problems. [5]
- **Q4)** a) Obtain stress componets when a concentrated load acting on the vertex of a wedge (Michell's problem). [5]
 - b) A thick cylinder of internal radius $r_1 = 150$ mm and external radius $r_0 = 260$ mm is subjected to an internal pressure $p_1 = 60$ MPa. Show the variation of radial and circumferential stress across the section of thick cylinder. [5]

Q5) a) A quarter circle beam of radius 1500 mm curved in plan is fixed at A and free at end B as shown in Fig. 5 a. It carries a vertical load P = 30kN at its free end. Determine the shear force (V), bending moment (M) and twisting moment (T). Also determine deflection at point B.

- b) Draw the shear force (V), bending moment (M) and twisting moment (T) diagram for the beam shown in Fig. 5 a. [3]
- **Q6)** a) Explain in details St. Venant's theory of torsion for prismatic bars of non-circular cross-sections. [5]
 - b) Explain torsion of thin walled structures by membrane analogy. [5]
- **Q7)** a) Show that the neutral axis of curve beam in elevation is below the centroidal axis towards the centre of curvature. [5]
 - b) Differentiate beams curved in plan and elevation. Plot the bending stress distribution for rectangular section of the crane hook. [5]
- **Q8)** a) Explain in details, Winkler type of foundation. [4]
 - b) Explain in details of an infinite beam subjected to a single concentrated load related to beams on elastic foundation. [6]

