Total No.	of	Questions	:	8]
-----------	----	-----------	---	----

SEAT No.	:	

P4602

[Total No. of Pages: 3

[4760] - 1029

M.E. (Civil) (Structures)

STRUCTURAL DYNAMICS

(2013 Pattern)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Figures in bold to the right, indicate full marks
- 3) If necessary, assume suitable data and indicate clearly
- 4) Use of electronic pocket calculator is allowed.
- *Q1*) a) Define the terms

[3]

- i) Forced Vibrations
- ii) Resonance
- iii) Fundamental Mode of Vibration
- b) Set up the equation of motion for the following undamped SDOF systems without external forces and solve for the response under the given condition. m=20kN, $K=18 \times 103kN/m$, $x_0=0.0lm$, x(0)=-3m/s refer Figure 1.

- Q2) a) Explain the various terms involved in forming a mathematical model for Dynamic system.[3]
 - b) The displacement of a body performing simple harmonic motion is defined by the following equation $x = A \sin(\omega t + \Phi)$ wehre A = amplitude, $\omega =$ natural frequency & $\Phi =$ phase angle. Given A = 20 mm, $\omega = 50$ rad/s and $\Phi = \pi/8$ radian, calculate the following:
 - i) The frequency.
 - ii) The periodic time
 - iii) The displacement, Velocity and acceleration when t = T/4.

Q3) a) Write a note on Dynamic magnification factor.

[3]

b) The two-storey building shown figure 2 has very stiff floor slabs relative to the supporting columns. Calculate the natural frequencies and mode shapes. Take $EI_c = 4.5 \times 10^3 \text{kNm}^2$. [7]

Q4) Write a short note on Newmark's method.

[10]

[3]

- **Q5)** a) Write short note on Orthogonality of mode shapes.
 - b) Determine the fundamental frequency for the system shown using Stodola's method. [7]

Figure 3

Q6) a) What are coupled system? Give suitable example?

- [3]
- b) Find the natural frequencies of the system shown in Figure. 4 with m_1 =m, m_2 = 2m, k_1 = k, and k_2 = 2k. Determine the response of the system when k=1000N/m, m=20kg, and the initial values of the displacements of the masses m_1 and m_2 are 1 and -1, respectively. [7]

Fig. 4

- **Q7)** a) Write note on mode superposition method for MDOF system? [5]
 - b) What short note on shear buildings with suitable examples? [5]
- Q8) Calculate the natural frequency for a clamped free rod subjected to axial vibration?
 [10]

യയയ