Total	N	0.	of	Q	ues	tio	ns	•	8	ı
-------	---	----	----	---	-----	-----	----	---	---	---

D4560		
P4560		[45(0]

SEAT No.: [Total No. of Pages: 3

[4760]-87

M.E. (Civil-Water Resource and Environmental Engineering) ADVANCE WASTE WATER TREATMENT

(2012 Course) (Semester - II) (501610)

Time: 3 Hours!

IMax. Marks:100

Instructions to the candidates:

- Answer any three questions from each section.
- Figures to the right indicate full marks.
- Assume suitable data, if necessary clearly mentioning the same.
- Use of non-programmable scientific calculator is allowed.

SECTION - I

- Draw and explain different flow charts for wastewater treatment by **Q1**) a) physical, chemical and biological process. [10]
 - Explain basic principle of grit and sedimentation tank. b) [6]
- Explain the various factors considered in the design of reactor. **Q2)** a) [6]
 - b) Explain mechanism of flocculation and explain different types of coagulants. [10]
- Write note on equalization and neutralization. *Q3*) a) [10]
 - b) Design a primary settling tank of rectangular shape for a town having a population of 25000 with a WS of 135 lpcd. Assume 80% of water supplied is converted into a w/w. Assume: [8]
 - $SOR = 30 \text{ m}^{3}/\text{m}^{2}/\text{d}$ i)
 - L:B = 1:4ii)
 - DT = 2.5 Hrs.iii)

	b)	Explain working mechanism of grit chamber and write different types of grit chamber. [6]							
				SECTION - II					
Q5)	a)	Writ	Write note fluidized bed reactor treatment.						
	b)	Ave	Average operating data for ASP plant is as follows						
		i)	Waste water flow = 25000 cum/d						
		ii)	Volume of aeration tank = 15500 cum						
		iii)	Influent BOD = 200mg/l						
		iv)	Effluent BOD = 25 mg/l						
		v)	MLSS = 3000 mg/l						
		vi)	Effluent suspended slid = 40 mg/l						
		vii)) Waste sludge suspended solids = 1200 mg/l						
		viii)	viii) Quality of waste sludge = 250 cum/d						
		Dete	Determine:						
		1) Aeration period							
			2)	F/M ratio					
			3)	Efficiency of BOD removal					
			4)	Sludge age					
Q6)	a)	Wri	Write note RBC.						
	b)	Design high rate single stage TF for population of 4000 persons. [10]							

Q4) a) Write the kinetics of aerobic and anaerobic process.

[10]

- Q7) a) Explain with a neat sketch: working of a 2-stage digester. Explain empirical formulae used to find the volume of the 2-stage digester. [10]
 - b) Explain different methods of sludge disposal. [6]
- Q8) a) Write note on [10]
 - i) Desalination
 - ii) Ultra filtration
 - b) Write different methods of dissolved solids and explain any one in detail. [8]

888