Total No. of Questions: 8]	SEAT No. :
P4119	[Total No. of Pages : 3

[4760] - 1047

M.E. (Civil) (Water Resources and Environment Engineering) ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY (2013 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.
- 6) Use data sheet.
- Q1) a) State the stability of atmosphere for the following data Temp. of air at ground = 30°C. Temp. of air at 200m height = 20°C. If a balloon is release from a ground after 1 hour reach to height of 100m at that time temperature of 22°C.
 - b) Explain radiation and types of radiation.
 - c) A high volume sampler is run for 30 min @ 20m³/min air. Initial weight of filter paper is 5 gm after 30 min weight of filter paper is 10 gm what is concentration of dust particle in microgram/m³. [3]
- **Q2)** a) Design multi cyclone chamber for flue gas of 10m³/sec. Assume all the necessary data. [4]
 - b) A fabric filter must process 3m³/s of flue gas. Design the bag house filter with air to cloth ratio of 4m³/min/m² Determine no. of bags and physical arrangement. Take dia. of each base as 200mm. [3]
 - c) Explain working of adsorption process in details. [3]

[3]

Q3)	a)	A gas has density of 1.89 kg/m³ at a pressure of 1 bar with temperature 30°C A mass of 0.9 kg of the gas requires a heat transfer of 300 kJ raise the Determine.	
		i) Characteristic gas constant.	
		ii) Cp of the Gas	
		iii) Cv of the Gas	
		Change in internal energy of gas	
	b)	Explain steam curve. [3]	
	c)	Explain vapor absorption system with diagram. [4]	
Q4)	a)	Determine reaction order of reactant removal for the data given in table [4]	
		concentration 230 180 110 60 40 22	
		Time (minute) 0 9 20 30 42 33	
	b)	Explain working & principle of ion exchange process. [3]	
	c)	A cold fluid flow through heat exchanger at rate of 20m³/hr. The temperature at entry of fluid and exit is 38°C and 62°C. The another fluid enters at rate of 30m³/hr and temperature is 112°C. Find the area required for heat exchanger in parallel and counter cement flow conditions. [3]	
Q5)	a)	Write short note on toxicity test. [3]	
	b)	Explain the concept of anaerobic sludge digestion with three phases such as hydrolysis, acidogensis, methonagesis and also explain conventional sludge digester with diagram. [4]	
	c)	A one cubic meter of air was sound to contain 100 microgram/m ³ of CO_2 . The temperature & pressure are 20°C and 103.12 kPa when the air sample was taken what was the concentration of CO_2 in PPM. [3]	

Q6) Explain working mechanism of:

[10]

- a) pH meter
- b) Flame photometer
- c) Atomic Absorption Spectrophotometer

- Q7) a) What are different type of reactor used in water treatment process. [6]
 - b) Design ASP for Industrial waste water of $10,000 \, \text{m}^3/\text{d}$, BOD of I/F = $200 \, \text{mg/L}$, E/F BOD = $10 \, \text{mg/L}$, Y = 0.5, K_d = $0.05/\,\text{day}$, MLSS = $4000 \, \text{mg/L}$, Return sludge concentration = $10,000 \, \text{mg/L}$, MCRT = $10 \, \text{days}$ [4] Determine 1. Volume of reactor
 - i) F/M ration.
 - ii) OLR
 - iii) Oxygen requirement
 - iv) Recycle ratio
- Q8) Explain uses of algae and problems caused by algae in water along with their controlling measures.[10]

