Total No	o. of Questions : 7] SEAT No. :
P420	
	[Total No. of Pages : 2 [4760] - 1189
	M.E. (Computer Engineering) (Semester - I)
	APPLIED ALGORITHMS
	(2013 Pattern)
Time: 3	Hours] [Max. Marks: 50
Instruct	ions to the candidates:
1)	Q. No. 1 is compulsory. Solve any 5 from Q.No.2 to Q.No. 7.
2)	Figures to the right indicate full marks.
3)	Neat diagrams must be drawn wherever necessary.
4)	Assume suitable data, if necessary.
Q1) a)	Solve following recurrence by iteration: [5]
	$T(n) = T(n-1) + n^4$
b)	Explain with examples Time and space trade-offs in algorithms. [5]
Q2) a)	Write pseudo code algorithm for quick sort also give its time analysis using recurrence. [4]
b)	Write Kruskal's minimum spanning tree algorithm and determine its time complexity. [4]
Q3) a)	Write approximation algorithm to store programs and also Prove that the

absolute approximate knapsack problem is NP-hard.

for function EpsilonApprox.

b)

b) Explain convex hull problem- formulation using graham scan algorithm. What is its time complexity? [4]

Write Heuristic algorithm for knapsack problem and also subalgorithm

[4]

[4]

Q5) a) Solve the given problem by simplex method

[4]

$$Max Z = 107 x_1 + x_2 + 2 x_3$$

STC

$$14 x_1 + x_2 - 6x_3 + 3x_4 = 7$$

$$16 x_1 + 1/2 x_2 - 6 x_3 < = 5$$

$$16 x_1 - 8x_2 - x_3 < 0$$

$$x_1, x_2, x_3, x_4 > 0$$

- b) Explain problem formulation for single source shortest path. Also write algorithm. [4]
- **Q6)** a) Explain moments and transforms of distributions with examples. [4]
 - b) Explain with examples expectations of functions of more than one random variable. [4]
- **Q7)** a) Give and explain inequalities and limit theorems. [4]
 - b) Explain random variable with suitable example. [4]

