Total No.	of Questions	:	71
-----------	--------------	---	----

SEAT No.:	
-----------	--

P4130

[4760] - 1066

[Total No. of Pages :2

M.E. (Mechanical - Design Engineering) ADVANCED STRESS ANALYSIS (2013 Credit Pattern) (Semester - I)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data, if necessary, if required, but state the assumptions clearly.

Q1) A stress function is given as under,
$$\phi = \left[C_1 \cdot r^4 + C_2 \cdot r^2 + C_3 + \frac{C_4}{r^2} \right] \cdot \cos 2\theta$$

where r and θ are polar coordinates.

Find out whether this is valid stress function.

Also determine the stresses.

[10]

- Q2) Derive three differential equations of equilibrium in Cartesian Coordinates considering body force components per unit volume with neat diagram. [10]
- **Q3)** The radii of curvature of two surfaces of semicircular discs at the point of contact are $R_1 = 70$ mm, $R_1' = 150$ mm, $R_2 = 100$ mm and $R_2' = 210$ mm. The angle between the principal planes of two bodies is 50°. determine the maximum principal stresses and maximum shearing stresses. Also locate the point where each of these stresses occurs. The load applied is 5kN. Take $E_1 = E_2 = 200$ GPa and $y_1 = y_2 = 0.29$. [10]
- **Q4)** Derive following expression for circular plate with a circular hole at the center.

$$\frac{dw}{dr} = \frac{a^2b^2m_1}{D(1-\mu)(a^2-b^2)} \left[\frac{1}{r} + \frac{(1-\mu)}{(1+\mu)} \cdot \frac{r}{a^2} \right]$$
 [10]

P.T.O.

Q5) A steel specimen is mounted with three rectangular rosette strain gauges. The strain gauge readings for particular loading are given as: [10]

$$\varepsilon_{A} = 100 \times 10^{-6}$$
 $\varepsilon_{B} = 500 \times 10^{-6}$ $\varepsilon_{C} = 600 \times 10^{-6}$

Determine the values and orientation of the principal stresses and maximum shear stress. Take y = 0.285 and E = 200GPa.

- Q6) a) Explain the effect of a stressed model in a circular polariscope in a light field arrangement.[5]
 - b) Explain dimensional analysis in experimental technique. [5]
- Q7) a) Discuss different properties and applications of a composite-Fibre Reinforced Plastic.[5]
 - b) Explain isometric fringe pattern. [5]

