Total No. of Questions : 6]	SEAT No.:	
P4393	[Total No. of Pages : 2	

[4760]-1070

M.E. (Mechanical Design Engineering)

OPTIMIZATION TECHNIQUES

(2013 Pattern) (Semester - III)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION - I

- Q1) a) What is the meaning of optimization? What are the different mathematical techniques for dealing optimization problems?[6]
 - b) Describe the following:

[4]

- i) Design constraints.
- ii) Design Vector.
- **Q2)** a) What is a convex set and non-convex set?

[4]

b) A manufacturer produces two types of machine parts P₁ and P₂, using lathes and milling machines. The machining times required by each part on the lathe and the milling machine are given below:

	Machine Time (hr) required by each unit on		
M/c Part	Lathe M/c	Milling M/c	Profit per unit
P_1	5	2	Rs. 200
P_2	4	4	Rs. 300

If the total machining time available in a week are 500 hours on lathe and 400 hours on milling machines, determine the total number of units of P_1 and P_2 are to be produced per week so as to maximize the profit. [6]

Q3) a) Find the value of x in the interval [0,3] using golden section method upto six iterations. [6]

$$F(x) = 0.65 - [0.75 / (1 + x^2)] - 0.65 \times x \times \tan^{-1} \left(\frac{1}{x}\right)$$

b) What are the advantages of Powell's method?

[4]

SECTION - II

- Q4) a) Write in brief the important stages in genetic algorithm. [5]
 - b) Write in brief the analogy used in simulated annealing method. [5]
- **Q5)** a) Minimize the function $F(x) = x \times (x 1.5)$ using Newton-Raphson method with a starting point $x_1 = 1.0$. [5]
 - b) What do you mean by topology optimization? Explain with a suitable example. [5]
- Q6) a) Write the flow chart of the BESO (Bidirectional Evolutionary Structural Optimization) Method.[6]
 - b) Write a short note on: [4]
 - i) Neural network.
 - ii) Fuzzy optimization.

