Total No. of Questions—12]

[Total No. of Printed Pages—8

Seat	
No.	

[4757]-101

S.E. (Civil) (I Sem.) EXAMINATION, 2015 ENGINEERING MATHEMATICS—III

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of non-programmable electronic pocket calculator is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

1. (a) Solve the following (any three):

(i) $(D-1)^2 (D^2 + 1)y = e^x + \sin^2 \frac{x}{2}$

P.T.O.

[12]

(ii)
$$(D^2 + 3D + 2)y = xe^x \sin x$$

(iii)
$$(D^2 - 1)y = e^{-x} \sin(e^{-x}) + \cos(e^{-x})$$

(By variation of parameter)

(iv)
$$(x^3D^3 + x^2D^2 - 2)y = x + \frac{1}{x^3}$$
 where $D = \frac{d}{dx}$

$$\frac{dx}{x^2 + y^2} = \frac{dy}{2xy} = \frac{dz}{\left(x + y\right)^3 z}.$$

Or

2. (a) Solve the following (any three): [12]

(i)
$$(D^3 - 3D^2 + 4D - 2)y = e^x + \cos x$$

(ii)
$$(D^3 + 3D^2 - 4D - 12)y = 12xe^{-2x}$$

(iii)
$$(D^3 - 6D^2 + 12D - 8)y = \frac{e^{2x}}{x}$$

(iv)
$$(2+3x)^2 \frac{d^2y}{dx^2} + 3(2+3x)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1.$$

$$\frac{dx}{dt} = 5x + y, \frac{dy}{dt} = y - 4x.$$

3. (a) Find the equation of the elastic curve and its maximum deflection for the simply supported beam of length 2L, having uniformly distributed load W per unit length. [8]

(b) Solve the equation:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

where u(x, t) satisfies the following conditions:

- (i) u(0, t) = 0
- (ii) u(L, t) = 0 for all t

(iii)
$$u(x, 0) = x \quad 0 < x < L/2$$

= $(L - x) L/2 < x < L.$ [8]

Or

- 4. (a) Determine whether resonance occurs in a system consisting of a weight 32 Lb. attached to a spring with constant K = 4 Lb/ft. and external force $16 \sin 2t$ and no damping force present, initially $x = \frac{1}{2}$ and $\frac{dx}{dt} = -4$. [8]
 - (b) Solve:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$$

subject to the conditions:

- $(i) \qquad u(0, t) = 0$
- (ii) u(5, t) = 0
- $(iii) \quad u(x, 0) = 0$

$$(iv) \quad \left(\frac{\partial u}{\partial t}\right)_{t=0} = 5\sin \pi x.$$
 [8]

5. (a) Solve:

$$10x_{1} - 7x_{2} + 3x_{3} + 5x_{4} = 6$$

$$-6x_{1} + 8x_{2} - x_{3} - 4x_{4} = 5$$

$$3x_{1} + x_{2} + 4x_{3} + 11x_{4} = 2$$

$$5x_{1} - 9x_{2} - 2x_{3} + 4x_{4} = 7$$

by Gauss elimination method.

(b) Using modified Euler's method, find y(0.2) and y(0.4) given $\frac{dy}{dx} = y + e^x y(0) = 0 \text{ with } h = 0.2.$ [8]

[9]

[8]

Or

6. (a) Solve the equations:

$$10x_{1} - 2x_{2} - x_{3} - x_{4} = 3$$

$$-2x_{1} + 10x_{2} - x_{3} - x_{4} = 15$$

$$-x_{1} - x_{2} + 10x_{3} - 2x_{4} = 27$$

$$-x_{1} - x_{2} - 2x_{3} + 10x_{4} = -9$$

by Gauss-Seidel method.

(b) Use Runge-Kutta method of fourth order solve :

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$

with y(0) = 1 at x = 0.2, 0.4 with h = 0.2. [9]

[4757]-101

SECTION II

- 7. (a) The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and 454.98. Calculate the moments about the mean. Also evaluate β_1 , β_2 . [6]
 - (b) Psychological tests of intelligence and Engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio (I.R.) and engineering ratio (E.R.). Calculate the coefficient of correlation:

Student	I.R.	E.R.
1	105	101
2	104	103
3	102	100
4	101	98
5	100	95
6	99	96
7	98	104
8	96	92
9	93	97
10	92	94

- (c) In a referendum 60% of voters voted in favour. A random sample of 200 voters was selected. What is the probability that in the sample:
 - (i) More than 130 voted in favour
 - (ii) 120 voted in favour. [5]

8. (a) The following are scores of two batsmen A and B in a series of innings:

A	В
12	47
115	12
6	16
73	42
7	4
19	51
119	37
36	48
84	13
29	0

Who is better score getter and who is more consistent? [7]

- (b) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. [5]
- (c) If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction. [5]
- 9. (a) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3, where t is the time. Find the components of its velocity and acceleration at t = 1 in the direction i + j + 3k. [5]

(b) Find the directional derivative of:

$$\phi = 5x^2y - 5y^2z + 2.5z^2x$$

at the point (1, 1, 1) in the direction of the line:

$$x - 1 = 3 - y = 2z. ag{6}$$

[5]

(c) Show that:

$$\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$$

is both solenoidal and irrotational.

Or

10. (a) Prove that (any two):

(i)
$$\nabla \left(\nabla \cdot \frac{\overline{r}}{r}\right) = -\frac{2}{r^3}\overline{r}$$

$$(ii) \qquad \nabla \times \left\lceil \left(\overline{r} \times \overline{a} \right) \times \overline{b} \right\rceil = \overline{b} \times \overline{a}$$

(iii)
$$\nabla \times [\overline{a} \times \nabla \log r] = \frac{2}{r^4} (\overline{a} \cdot \overline{r}) \overline{r}$$
.

(where \overline{a} and \overline{b} are constant vectors.) [6]

(b) Determine the constants a and b such that the vector : $\overline{F} = (2xy + 3yz)i + (x^2 + axz - 4z^2)j + (3xy + 2byz)k$ is irrotational. [4]

(c) Find the directional derivative of the divergence of :

$$F(x, y, z) = xyi + xy^2j + z^2k$$

at the point (2, 1, 2) in the direction of the outer normal to the sphere $x^2 + y^2 + z^2 = 9$. [6]

[4757]-101 7 P.T.O.

11. (*a*) If

$$\overline{F} = 2xyzi + (x^2z + 2y)j + x^2yk,$$

then find the work done in moving a particle under this force field from (0, 1, 1) to (1, 2, 0). [5]

(b) Using Stokes' theorem, evaluate:

$$\int_{C} \left(xy \, dx + xy^2 \, dy \right)$$

where C is the square with vertices (1, 0), (-1, 0), (0, 1), (0, -1).

(c) Evaluate:

$$\iint\limits_{S} \left(2xyi + yz^2j + 2zk \right) \cdot d\overline{S}$$

where S is the total surface of a region bounded by x = 0, y = 0, z = 0, y = 3 and x + 2z = 6. [6]

Or

12. (a) Evaluate :

$$\oint_C \left[\left(x^2 + 2y \right) dx + \left(4x + y^2 \right) dy \right]$$

by Green's theorem, where C is the boundary of the region bounded by y = 0, y = 2x and x + y = 3. [5]

(b) Using Stokes' theorem show that:

$$\oint_{C} (y dx + z dy + x dz) = -\iint_{S} (\cos \alpha + \cos \beta + \cos \gamma) dS$$

where α , β , γ are angle made by the normal to the surface S, with x, y, z axes respectively. [6]

(c) Show that the velocity potential:

$$\phi = \frac{a}{2} \left(x^2 + y^2 - 2z^2 \right)$$

satisfies the Laplace's equation. Also determine the streamlines. [6]