Total No. of Questions—12]

[Total No. of Printed Pages—4

Seat	
No.	

[4757]-189

S.E. (Computer Engineering) (Second Semester)

EXAMINATION, 2015

COMPUTER ORGANIZATION

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6 from Section I.
 - (ii) Answer Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10,Q. No. 11 or Q. No. 12 from Section II.
 - (iii) Neat diagram must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Draw the hardware implementation of booth's algorithms and explain the same. [8]
 - (b) Show the general structure of IAS computer. Explain stored program concept. [6]
 - (c) Write neat diagram, explain in detail functional units of computer system. [4]

P.T.O.

(a) Perform the following divisions using restoring division:[8]

2.

		(i) Dividend = 1011
		(ii) Divisor = 11.
	(b)	Draw and explain the flowchart for floating point addition and
		explain. [6]
	(c)	Draw and explain Von Neumann architecture. [4]
3.	(a)	Draw and explain CPU architecture of Intel processor. [8]
	(b)	Discuss in detail register organization of intel processor.[8]
		Or
4.	(a)	List and explain different addressing modes of Pentium
		processor. [8]
	(b)	Explain in detail horizontal and vertical organization of
		microinstructions. [8]
5.	(a)	What are the different design methods for hardwired control
		units ? Explain any one. [8]
	(b)	Explain the design of ALU using combinational circuits. [8]
[4757]-189	2

6.	(a)	Draw and explain single bus organization of CPU.	[8]				
	(b)	Explain instruction cycle. How will you represent instruction	on				
		cycle with interrupts ? Explain.	[8]				
	SECTION II						
7.	(a)	What is virtual memory concept ? Explain the role of TL	ιВ				
		in virtual memory organization. [1	.0]				
	(b)	Explain the following:	[8]				
		(i) RAID					
		(ii) Magnetic Memory.					
		Or					
8.	(a)	Explain cache coherence strategies.	[8]				
	(b)	Explain the following: [1	[0.				
		(i) DAT					
		(ii) DRAM.					
9.	(a)	Explain Synchronous and Asynchronous bus in an input operation	on				
		with timing diagrams.	[8]				
	(b)	Explain Programmed I/O and Interrupt Driven I/O.	[8]				
[4757]-189	3 P.T.	Ο.				

10.	(a)	Explain in detail DMA data transfer mode.	[8]
	(<i>b</i>)	Explain in detail how scheduling and memory management	ent is
		done by operating system with its types.	[8]
11.	(a)	Explain in detail super scalar architecture.	[8]
	(b)	Explain Symmetric multiprocessor organization.	[8]
		Or	
12.	(a)	Enlist the characteristics of Non-Uniform Memory A	.ccess
		(NUMA).	[8]
	(b)	Compare RISC versus CISC.	[8]