Seat	
No.	

[4757]-190

S.E. (I Sem.) EXAMINATION, 2015

(Common to Computer Engineering and IT)

DISCRETE STRUCTURES

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two Sections should be written in separate answer-books.
 - (ii) In Section I attempt Q. No. 1 or Q. No. 2,
 Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6.
 - (iii) In Section II attempt Q. No. 7 or Q. No. 8. Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
 - (iv) Neat diagrams must be drawn wherever necessary.
 - (v) Figures to the right indicate full marks.
 - (vi) Assume suitable data, if necessary.

SECTION I

- 1. (a) Determine whether each of the following statements is true or false. Briefly explain your answer: [8]
 - (i) A \cup P(A) = P(A)
 - (ii) $\{A\} \cup P(A) = P(A)$
 - (iii) $\{A\} \cap P(A) = A$
 - (iv) A P(A) = A.

P.T.O.

- (b) Obtain the conjunctive normal form of: [8]
 - (i) $(\sim p \rightarrow r) \land (p \leftrightarrow q)$
 - (ii) $(p \land q) \lor (\sim p \land q \land r)$.

- 2. (a) Give truth table and comment whether tautology or contradiction: [8]
 - $(i) \qquad \exists (\exists P \lor \exists Q)$
 - (ii) $(| P \land (| Q \land R)) \lor (Q \land R) \lor (P \lor R)$
 - (iii) $(P \rightarrow Q) \land (Q \rightarrow P)$.
 - (b) To describe various restaurants in the city, we let p denotes the statement "The food is good", q denotes the statement "The service is good", r denotes the statement "The rating is three-star". Write the following statement is symbolic form:
 - (i) Either the food is good or the service is good or both.
 - (ii) Either the food is good or the service is good but not both.
 - (iii) The food is good while the service is poor.
 - (iv) It is not the case that both the food is good and the rating is three-star.
 - (v) If both the food and services are good, then the rating will be three-star.
 - (vi) It is not true that a three-star rating always means good food and good service.
 - (c) Define the term countably infinite set and uncountably infinite set. [2]

3. (a)	Define with examples:	[8]
	(i) Subgroup	
	(ii) Cyclic Group	
	(iii) Field	
	(iv) Integral domain.	
(b)	Prove the following results for the group G:	[6]
	(i) The identity element is unique.	
	(ii) Each a in G has a unique inverse a^{-1} .	
	(iii) $ab = ac$ implies $b = c$.	
(c)	What is homomorphism and automorphism in an algebra	aic
	system ?	[2]
	Or	
4. (a)	A central groupoid is an algebraic system (A, *), where *	is
	a binary operation such that $(a * b) * (b * c) = b$. For	all
	a, b, c belongs to A. Such that:	[8]
	(i) $a * ((a * b) * c) = a * b$	
	(ii) $(a * (b * c)) * c = b * c.$	
(b)	Let $Z = \{0, 1, 2, \dots, n-1\}$. Let \Diamond be a binary operat	ion
	such that $a \diamond b$ = remainder of $a.b$ divided by n . Constr	uct
	a table of $n=4$. Is $(\mathbf{Z}_4,\ \lozenge)$ a groupoid, monoid, semi-groupoid	oup
	and abelian group.	[8]
[4757]-190	3 P.T	'.O.

- 5. (a) Let R be a binary relation on the set of all strings of 0's and 1's such that $R = \{(a, b) | a \text{ and } b \text{ are strings that have the same number of 0's} \}$: [8]
 - (i) Is R reflexive?
 - (ii) Is R symmetric?
 - (iii) Is R antisymmetric?
 - (iv) Is R transitive?
 - (v) Is R equivalence relation?
 - (vi) Is R a partial ordering relation?
 - (b) Find the transitive closure of R by Warshall's algorithm: $A = \{\text{set of integers} \le 10\}, B = \{(a, b) | a \text{ divides } b\}.$ [8]
 - (c) Let $X = \{1, 2, 3\}$ and f and g, be function from X to X given by : [2] $f = \{(1, 2), (2, 3), (3, 1)\}, g = \{(1, 2), (2, 1), (3, 3)\}.$ Find :
 - (i) $f \circ g$
 - (ii) $g \circ f$.

- **6.** (a) For a given set A consider $R = \{(x, y) | x \in P(A), y \in P(A), x \downarrow y\}$. Show that R is a partial ordering relation. What is the length of the longest chain in the poset $\{P(A), R\}$? [8]
 - (b) Let A = {1, 2, 3, 4, 6, 12, 16, 36} and let R be the relation on A defined by x divides y. Draw the Hasse diagram. Compare it with digraph. Determine whether R is a reflexive, transitive and symmetric.
 [8]
 - (c) Let $A = \{2, 3, 4, 6\}$ and let aRb if a divides b. State R is a partial order. [2]

SECTION II

7. (a) Which of the following graphs have a Euler circuit or path or Hamiltonian cycle? Write the path or circuit: [6]

(b) Define graph and multigraph. Give any two applications of graph and represent them in graph notation. [6]

(c) Identify whether the graphs given are planar or not. Draw planar representation if possible: [6]

- 8. (a) State and prove Euler's formula for a connected planar graph of order n, size e and with f faces. [6]
 - (b) Use Dijkstra algorithm to find the shortest path from a to f. [8]

(c) Draw isomorphic graph of a graph shown in the following figure but no crossover of edges. [4]

9. (a) Using Prim's algorithm construct minimal spanning tree starting at vertex a. [6]

- (b) Draw a binary search tree for input data 200, 100, 300, 50, 150, 250, 400, 10, 75, 125, 175. Which is a root, leaf nodes and interior nodes. [6]
- (c) Construct the expression tree for the following expression: $(3 (2(-11 (9 4)))) \div (2 + (3 + (4 + 7))).$ Also evaluate expression. [4]

10. (a) Use labeling procedure to find maximum flow in transport network shown below. Define corresponding minimal cuts. [8]

- (b) Use Huffman coding to encode the following symbol with the frequencies listed A: 0.08, B: 0.010, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is average number of bits used to encode the character?
- 11. (a) If repetitions are not permitted, how many four digit numbers can be formed from digits 1, 2, 3, 7, 8 and 5. [6]

- (b) Show that : [6] $c(2n, 2) = 2c(n, 2) + n^2.$
- (c) How many seven letter words can be formed using the letters of the word BENZENE? [4]

- 12. (a) Three students A, B and C are swimming in the race. A and B have same probability of winning and each is twice as likely to win as C. Find probability that:
 - (i) B wins
 - (ii) C wins
 - (iii) B or C wins.
 - (b) A woman has 11 friends of them six are women: [6]
 - (i) In how many ways can she invite three or more?
 - (ii) In how many ways can she invite three or more of them if she wants same number of men and women (including herself) ?
 - (c) A coin is tossed 3 times. Find the probability that there will appear: [4]
 - (i) Three heads
 - (ii) Exactly 2 heads
 - (iii) No heads.