Total No. of Questions—12] [Total No. of Printed Pages—4+2]

Seat	
No.	

[4757]-194

S.E. (Information Technology) (First Semester) **EXAMINATION, 2015**

FUNDAMENTAL OF DATA STRUCTURES (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. := (i)Answers to the two Sections should be written in separate answer-books.
 - Answer any three questions from each Section. (ii)
 - Neat diagrams must be drawn wherever necessary. (iii)
 - (iv)Figures to the right indicate full marks.
 - (v)Assume suitable data, if necessary.

SECTION I

- What is structure in C? Give its applications. 1. [4](a)
 - Compare macro and function. [4] (b)
 - Write C program to swap two nos. using call (c) by reference. [8]

Or

- 2. Write a C program to print binary equivalent of a decimal (a) number. [6]
 - Explain various operators in 'C'. [4](b)

P.T.O.

```
Select the choice for the correct answer and write that
(c)
     choice:
                                                              [3 \times 2 = 6]
     (i) #include<stdio.h>
         #define x 20
         main()
          {
              int x=50;
              printf("%d\n", x);
         }
         The above code snippet will print:
         (1) 20
         (2) 50
         (3) Compile error
         (4) None of the above
     (ii) int main(void)
          {
              int x=10;
              if (! x)
                   printf("Hello\n");
              else
              {
                   x=0
                   printf("Bye\n")
              }
              return 0;
              }
```

		(1) Bye
		(2) Hello
		(3) Hello (infinitely)
		(4) Bye (infinitely)
ก	()	White a Community find the community of a matrix
3.	(a)	Write a C program to find transpose of a matrix. [6]
	(b)	Write a C program to perform multiplication of two 4 by 4
		matrices using function. [6]
	(c)	Describe the following declarations: [4]
		(i) int *p[10];
		(ii) float (*p) (int no);
		(iii) int (*q) [5];
		(iv) char s[10][20][50];
		Or
4.	(a)	Write a C program to find HCF and LCM of two nos. [8]
	(b)	What is recursion? Explain with example. [4]
	(c)	Write a C program to find length of a string without using
	(0)	
		library functions. [4]
5.	(a)	What is an abstract data type ? Explain with an
	` /	example. [4]
		[*]
[4757]]-194	3 P.T.O.

The above code snippet will print :

(b) Determine the frequency counts for all the statements in the
following program segment : [6]
add(a, b, c, m, n)
{
 for i:=1 to m do
 for j:=1 to n do
 c[i][j]:=a[i][j]+b[i][j];

(c) What do you mean by frequency count of a statement? Explain its importance in analysis of algorithm with suitable examples. [8]

Or

- 6. (a) Explain Big Oh, Omega and Theta notations used to analyze time complexity. [6]
 - (b) Write a non-recursive C function to generate Fibonacci series. [4]
 - (c) Write an algorithm to find smallest element in an array of integers and analyze is time complexity. [8]

SECTION II

- 7. (a) Explain similarities and differences between bubble and selection sort. Justify why selection sort is more efficient. [8]
 - (b) Write C program for selection sort. Analyze its time complexity. Show output after each pass for the following list: [10] 50, 15, 70, 18, 14, 30, 13, 10, 21, -15.

}

- 8. (a) Write a C program for Merge sort and explain it using example. [8]
 - (b) Consider the following numbers. Sort them using "bubble sort".

 Comment on time and space complexity in best, average and worst cases. Show output after each pass: [10]

45, 33, 6, 55, 3, 0, -4, 30.

- 9. (a) Write a C program for Fast and Simple Transpose. [10]
 - (b) Represent the following polynomials using arrays: [6]
 - (i) $x^5 5x^3y^2 + 2y x$
 - (ii) $2x^5 + 21x^4y^2 30x^2y^2 + 10x$
 - $(iii) -3x^5y^7 + 7y^3 2.$

Or

- 10. (a) Write a C program for performing the following string operations without using library functions: [8]
 - (i) Reverse of a string
 - (ii) Palindrome of two strings.
 - (b) Write a C program for addition of two polynomials where polynomials are represented using array. [8]
- 11. (a) Write recursive functions for the following operations on SLL: [8]
 - (i) Display reverse
 - (ii) Count no. of nodes.
 - (b) Write a C program to create doubly link list. [6]
 - (c) Write applications of linked lists. [2]

[4757]-194 5 P.T.O.

- 12. (a) Write a C program to add two decreasing ordered polynomials with positive exponents, represented using circular SLL with header node exponent field is set to -1. [8]
 - (b) Compare sequential data organization with linked organization. [6]
 - (c) Why linked organization is preferred over sequential organization in list manipulation? [2]