Total No. of Questions—12]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4757]-114

S.E. (Mechanical/Automobile) (I Sem.) EXAMINATION, 2015 FLUID MECHANICS

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer three questions from each Section.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Draw diagrams wherever necessary.
 - (iv) Use of scientific calculator is allowed.
 - (v) Assume suitable data wherever necessary.

SECTION I

- 1. (a) Explain the following terms:
 - (i) Compressibility
 - (ii) Surface tension
 - (iii) Viscosity

(iv) Capillarity. [8]

(b) Discuss various types of flows.

(c) What is fluid? What is the difference between real and ideal fluids? [2]

P.T.O.

[8]

2.	(a)	A 400 mm diameter shaft is rotating at 200 rpm in a bearing	
		of length 120 mm. If the thickness of oil film is 1.5 mm and	
		the dynamic viscosity of the oil is $0.7~\mathrm{N.s/m^2}$, determine :	
		(i) Torque required to overcome friction in bearing	
		(ii) Power utilized in overcoming viscous resistance. [8]	
(<i>b</i>)		Explain:	
		(i) Stream function	
		(ii) Velocity potential. [6]	
(c)		Define:	
		(i) Stream lines	
		(ii) Path lines and	
		(iii) Streak lines. [4]	
3.	(a)	State and prove hydrostatic law. [8]	
	(b)	Explain with neat sketch the method of determining metacentric	
		height of floating body. [8]	
		Or	
4.	(a)	An isosceles triangular plate of base 3 m and altitude 3 m	
		is immersed vertically in an oil of specific gravity 0.8. The	
		base of the plate coincides with the free surface of oil.	
		Determine:	
		(i) Total pressure on the plate	
		(ii) Center of pressure. [8]	
	(b)	State and prove Pascal's law. [8]	
[4757]]-114	2	
·	=		

- **5.** (a) Derive an expression of Bernoulli's equation using first principle. [8]
 - (b) A 300 mm × 150 mm venturimeter is provided in a vertical pipeline carrying oil of specific gravity 0.9, flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 300 mm. The differential U-tube mercury manometer shows a gauge deflection of 250 mm. Calculate:
 - (i) The discharge of oil, and
 - (ii) The pressure difference between the entrance section and the throat section.

Take C_d = 0.98 and specific gravity of mercury as 13.6. [8]

Or

- **6.** (a) Compare Venturimeter and Orifice meter. [4]
 - (b) Discuss various arrangements of Pitot tube. [8]
 - (c) List of forces acting on fluid mass. Explain the significance of each term. [4]

SECTION II

- 7. (a) Derive Hagen-Poiseuille equation for laminar flow in the circular pipes. [12]
 - (b) What are repeating variables? What points are important while selecting repeating variables? [6]

[4757]-114 3 P.T.O.

8. (a) Discharge Q of a centrifugal pump can be assumed to be dependent on density of liquid ρ , viscosity of liquid μ , pressure, impeller diameter D, and speed N in RPM. Using Buckingham π -theorem, show that :

$$Q = ND^3\phi \left[\frac{gH}{N^2D^2}, \frac{v}{ND^2} \right].$$
 [10]

- (b) Derive expression for velocity distribution for flow in fixed parallel plates. [8]
- 9. (a) Derive an expression for the power transmission through the pipes. Find also the condition for maximum transmission of power. [8]
 - (b) A siphon of dia. 200 mm connects two reservoirs having a difference of elevation of 15 m. The total length of siphon is 400 m and the summit is 3 m above the water level in the upper reservoir. The length of siphon from upper reservoir to summit is 120 m. Take friction factor = 0.02, determine:
 - (i) Discharge through the siphon, and
 - (ii) Pressure at the summit.

Neglect minor losses. [8]

[4757]-114

10.	(a)	A piping system consists of three pipes arranged in serie	es;	
		the lengths of the pipes are 1200 m, 750 m and 600 m a	nd	
		diameters 750 mm, 600 mm and 450 mm respectively:		
		(i) Transform the system to an equivalent 450 mm diamet	ter	
		pipe, and		
		(ii) Determine an equivalent diameter for the pipe, 2550	m	
			[6]	
	(b)		[6]	
	(c)	•	[4]	
	(0)	Explain initiof losses occurred in pipe.	[+]	
11.	(a)	Discuss boundary layer development over flat plate.	[8]	
	(b)	Discuss flow around cylinder and airfoil.	[8]	
		Or		
12.	(a)	Write a short note on "Separation of Boundary Layer,	its	
		Control".	[8]	
	(b)	A plate 450 mm × 150 mm has been placed longitudina	lly	
		in a stream of crude oil (specific gravity 0.925 and kinema	tic	
		viscosity of 0.9 stokes) which flows with velocity of 6		
		Calculate:		
		(i) The friction drag on the plate,		
		(ii) Thickness of the BL at the trailing edge, and		
			[Q]	
		(iii) Dhear succes at the training edge.	[8]	