Total No. of Questions—12] [Total No. of Printed Pages—4+2]

Seat	
No.	

[4757]-120

S.E. (Mech./Auto.) (Second Semester) EXAMINATION, 2015

PRODUCTION TECHNOLOGY

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

N.B. :— (i) Answer any three questions from each section.

- Answers to the two sections should be written in separate (ii)answer-books.
- (iii)Figures to the right indicate full marks.
- Neat diagrams must be drawn whenever necessary. (iv)
- Assume suitable data, if necessary.

SECTION I

- (a) A tool with 18° rake angle is making an orthogonal cut, 1. 3 mm wide, at a speed of 31 rpm and feed of 0.25 mm. The chip thickness ratio is 0.55 cutting force is 1392 N and feed force as 363 N. Find: [10]
 - (*i*) Chip thickness

(ii) Shear plane angle
(iii) Coefficient of friction on tool force
(iv) Shear force on shear plane
(v) Energy consumes in kW min/cm ³ .
State the factors which affect tool life. [6]
Or
The following equation or tool life is given in turning ${\rm VT}^{0.13}\ f^{0.77}\ d^{0.37} = {\rm c}.$
A 60 minute tool life was obtained while cutting at
v = 30 m/min, $f = 0.3$ mm/rev and $d = 2.5$ mm. Determine
the change in tool life if the cutting speed, feed and depth
of cut are increased by 20% individually and also taken
together. [10]
Sketch and explain the Merchant's circle of cutting
forces. [6]

- 3. (a) Explain various types of broaching machine. [6]
 - (b) Explain thread rolling process with neat sketch. [5]
 - (c) What is gear hobbing? Explain gear hobbing principle. [5]

(b)

(a)

(b)

2.

4.	(a)	Draw the neat sketch of broach geometry detail. [6]	,]
	(b)	Explain the concept of gear shaping process with nea	
		sketch. [5	<u>'</u>]
	(c)	What is a thread chaser? Briefly describe it. [5	,]
5.	(a)	Explain the classification of NC system according to motion	n
		control system. [6	i]
	(b)	Differentiate between Open Loop and Closed Loop CNC	\mathcal{I}
		System. [6	i]
	(c)	Write short notes on $(any two)$: [6]	i]
		(i) Machine center	
		(ii) FMS	
		(iii) DNC.	
		Or	
6.	(a)	Draw a block diagram of CNC system and explain the function	า
		of it. State advantages and limitations of it. [6	[]
	(b)	Explain the classification of NC system according to tool positioning	g
		with suitable example. [6	,]
	(c)	Write the function of the following codes: [6	i]
		G71, G90, G33, M02, M04, M08.	
[4757]	-120	3 P.T.O).

SECTION II

- 7. (a) Explain various methods of reducing shear forces. [6]
 - (b) For the work piece made up of copper plate of thickness 2 mm. Design: [8]
 - (i) blanking die
 - (ii) blanking punch
 - (iii) press tonnage
 - (iv) strip layout for single die. Shear strength for copper is 280 N/mm^2 .

Assume clearance is 5% of thickness.

Fig. 1

(c) Differentiate between bending and drawing.

[4]

8.	(a)	Determine center of pressure for the same component shown in figure 1. [6]
	(b)	Explain function of each element of simple die with neat sketch. [8]
	(c)	Define (any two): [4]
		(i) Pilot
		(ii) Shut height
		(iii) Shear.
9.	(a)	Draw self explanatory diagram of AJM. [4]
	(b)	Explain why EBM process is carried out in vacuum. [4]
	(c)	What are the requirements of tool material for EDM. Name common tool materials. [4]
	(d)	What is difference between USM and conventional grinding? [4]
		Or
10.	(a)	Enlist applications of IBM and PAM. [6]
	(b)	Explain working of Laser beam machining with neat sketch. [6]
	(c)	Enlist advantages and limitations of ECM. [4]
11.	(a)	What are the general guiding principals of fixture design ? [6]
	(b)	Describe quick acting clamping device with neat sketch. [6]
	(c)	Explain working of channel type jig with neat sketch. [4]
[4757]]-120	5 P.T.O.

- 12. (a) Write a short note on bushes used in jigs. [6]
 - (b) Explain principal of redundant location and principal of fool proofing with neat sketch. [6]
 - (c) Design and sketch drill jig for drilling two holes of ϕ 8 mm in the part as shown in figure 2. [4]

Fig. 2