Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[4757]-1073

S.E. (Computer Engg.) (First Semester) EXAMINATION, 2015 DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4 and Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Minimize the following function using K-map and realize using logic gates: [4]

F(A, B, C, D) =
$$\sum m$$
 (1, 5, 7, 13, 15)
+ $d(0, 6, 12, 14)$

(b) Convert the following:

[2]

$$(46)_{10} = (?)_8$$

(c) List the differences between CMOS and TTL. [6]

P.T.O.

2.	(a)	Convert the following numbers into binary numbers? [4]
		(i) (37) ₈
		(ii) $(25.5)_{10}$
	(b)	Explain standard TTL characteristics in detail. [6]
	(c)	Represent the following signed number in 2's complement
		method: [2]
		(i) +25
		(ii) -25
3.	(a)	Design a 3-bit excess 3 to 3-bit BCD code converter using
		logic gate. [6]
	(b)	Design mod-5 synchronous counter using J-K flip-flop. [4]
	(c)	Draw the excitation table of J-K flip-flop. [2]
		Or
4.	(a)	Design a 4-bit binary to Gray code converter circuit using
		logic gates. [4]
	(b)	Design a Mod 20 counter using decade counter IC7490. [6]
	(c)	Perform the following: [2]
		$(11011)_2 + (0101)_2 = (?)_2$
_		

5.	(a)	State and explain basic component of ASM chart? Also explain
		the salient features of ASM chart. [7]
	(<i>b</i>)	Write VHDL code 4: 1 multiplexer using behavioural and
		data flow modelling style. [6]
		Or
6.	(a)	Design a sequence generator circuit to generate the sequence
		1–2–3–7–1 using Multiplexer controller based ASM approach.
		Consideration: [7]
		(i) If control input $C = 0$, the sequence generator circuit
		in the same state.
		(ii) If control input $C = 1$, the sequence generator circuit
		goes into next state.
	(<i>b</i>)	Explain the following statements used in VHDL with suitable
		examples: [6]
		(i) CASE
		(ii) With select-when
		(iii) Loop statement.
7.	(a)	Comparison between PROM, PLA and PAL. [7]
	(<i>b</i>)	Draw and explain the basic architecture of FPGA. [6]
[4757]]-1073	3 P.T.O.

- 8. (a) A combinational circuits is defined by the function : $F_1(A, B, C) = \sum m \ (0, 1, 3, 7)$
 - $F_2(A, B, C) = \sum m (1, 2, 5, 6)$

Implement this circuit with PLA.

(b) A combinational circuits is defined by the function : 6 $F_1 \ (A, \ B, \ C) \ = \ \sum m \ (0, \ 1, \ 5, \ 6, \ 7)$

Implement this circuit with PAL.