Total No. of Questions—8]

[Total No. of Printed Pages—4+1]

Seat	
No.	

[4757]-1017

S.E. (Automobile/Mechanical Engineering)

(Second Semester) EXAMINATION, 2015

APPLIED THERMODYNAMICS

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, N.B. := (i)Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - Assume suitable data, if necessary. (ii)
 - (iii) Draw neat diagrams wherever necessary.
 - Figures to the right indicate full marks. (iv)
- Explain with the help of a P-V diagram the loss due to variation 1. (a) of specific heats in an Otto cycle. [6]
 - (b) With a neat sketch explain the working principle of simple carburetor. [6]

Or

- 2. Draw ideal and actual valve timing diagram for four stroke (a) [6] S.I. engine.
 - (b) Explain the different stages of combustion in S.I. engine.[6]

P.T.O.

- 3. (a) Explain the various factors that influence the delay period in C.I. engine. [6]
 - (b) In a test of a four-cylinder four-stroke petrol engine of 75 mm bore and 100 mm stroke, the following results were obtained at full throttle at a constant speed and with a fixed setting of the fuel supply of 0.082 kg/min.:

BP with all cylinders working = 15.24 kW

BP with cylinder No. 1 cut-off = 10.45 kW

BP with cylinder No. 2 cut-off = 10.38 kW

BP with cylinder No. 3 cut-off = 10.23 kW

BP with cylinder No. 4 cut-off = 10.45 kW

Estimate:

- (1) Total indicated power of the engine
- (2) Total friction power,
- (3) Indicated thermal efficiency of the engine

 If the calorific value of the fuel is 44 MJ/kg [7]

4. (a) Explain with figures various types of combustion chambers used in CI engines. [6]

(b) During the trial of a single cylinder, four-stroke oil engine, the following results were obtained: [7]

Cylinder diameter = 20 cm

Stroke = 40 cm

Mean effective pressure = 6 bar

Torque = 407 Nm

Speed = 250 r.p.m.

Fuel consumption = 4 kg/h

Calorific value of fuel = 43 MJ/kg

Cooling water flow rate = 4.5 kg/min

Air used per kg of fuel = 30 kg of air/kg of fuel

Rise in cooling water temperature = 45°C

Temperature of exhaust gases = 420°C

Room temperature = 20°C

Mean specific heat of exhaust gas = 1 kJ/kgK

Specific heat of water = 4.18 kJ/kgK

Find IP, BP and draw heat balance sheet for the test.

[4757]-1017 3 P.T.O.

5.	(a)	Explain with neat sketch pressurized dry	sump lubrication		
		system.	[6]		
	(<i>b</i>)	Discuss the effect of A: F ratio on emi	ssion of: [6]		
		(1) Unburnt HC			
		(2) CO			
		(3) NO_x .			
		Or			
6.	(a)	Explain battery ignition system with neat	diagram. [6]		
	(b)	Explain exhaust gas recirculation method us emissions.	sed to control NO_x [6]		
7.	(a)	What are the advantages of multi-staging is compressor ?	n reciprocating air [6]		
	(<i>b</i>)	During an experiment on reciprocating air compressor the following			
		observations are being taken:	[7]		
		Barometer reading	= 75.6 cm Hg		
		Manometer reading across orifice	= 13 cm Hg		
		Atmospheric temperature	= 25°C		
		Diameter of orifice	= 15 mm		
		Coefficient of discharge across the orifice	= 0.65		
		Take density of Hg	$= 0.0135951 \text{ kg/cm}^3$		
		Determine the volume of free air handled	by compressor in		
		m³/min.			
[475	7]-101	7 4			

- 8. (a) Draw isothermal, polytrophic and isentropic compression on P-V and T-s diagram and compare the three works. [6]
 - (b) Determine the minimum number of stages required in an air compressor which admits air at 1 bar 27°C and delivers at 180 bar. The maximum discharge temperature at any stage is limited to 150°C. Consider the index for polytropic compression as 1.25 and perfect and optimum inter-cooling in between the stages. Neglect the effect of clearance.