Total No. of Questions—8]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4757]-1019

S.E. (Mech./Mech. Sand./Auto.) (Second Semester) EXAMINATION, 2015

THEORY OF MACHINES—I

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Define 'Inversion'. Explain with the help of neat sketches any two inversions of double slider crank chain. [5]
 - (b) Write a note on 'Dynamically Equivalent System'. [5]

Or

- 2. (a) Compare 'Davis' and 'Ackermann' Steering Gear Mechanisms. [4]
 - (b) With the help of neat schematic diagram, derive frequency equation of bifilar suspension system. [6]

P.T.O.

3.	(a)	Determine the dimensions of the contact surfaces of cone clutch	h,		
		for the following specifications:	5]		
		(i) Power transmission capacity = 20 kW			
		(ii) Speed = 1600 rpm			
		(iii) Cone angle = 30°			
		(iv) Maximum intensity of pressure = $0.8 \times 10^5 \text{ N/m}^2$			
		(v) Coefficient of friction = 0.3			
		(vi) Mean radius is twice the width of the friction surfac	e.		
		Assume uniform wear condition.			
	(b)	Explain Complex Algebra method of acceleration analysis for	or		
		a binary link.	5]		
Or					
4.	(a)	Describe with neat sketch the construction and working	of		
		epicyclic train type dynamometer.	5]		
	(b)	Derive an equation for velocity of piston in an I.C. enging	ıe		
		mechanism, when crank rotates with uniform angular velocit	ιy		
		using analytical method.	5]		
5.	(a)	State and explain Kennedy's theorem.	4]		
[4757]]-1019	2			

- (b) In the mechanism shown in Fig. 1, the crank OA rotates at 20 rpm in anticlockwise direction and gives motion to the sliding blocks B and D. For the given configuration of mechanism, determine by relative velocity method and relative acceleration method:
 - (i) Velocity of sliders B and D
 - (ii) Angular velocity of link CD
 - (iii) Acceleration of sliders B.

OA = 300 mm, AB = 1.2 m, BC = CD = 450 mm Fig. 1 (for Q. No. 5 (b) and Q. No. 6(b))

Or

6. (a) With the help of neat sketch, explain the concept of 'Velocity

Image Principle'. [4]

[4757]-1019 3 P.T.O.

- (b) In the mechanism shown in Fig. 1 the crank OA rotates at 20 rpm in anticlockwise direction and gives motion to the sliding blocks B and D. For the given configuration of mechanism, locate all instantaneous centers of rotation, then determine:
 - (i) Velocity of sliders B and D
 - (ii) Angular velocities of links AB and CD. [11]
- 7. (a) What is Coriolis acceleration? Find the direction of this acceleration in the case shown in Fig. 2. [4]

Fig. 2 (For Q. 7(a))

- (b) The crank of an engine is 180 mm long and obliquity ratio is 4. Determine the velocity and acceleration of the piston, when the crank is turned through 40° from I.D.C. position for the following two cases:
 - (i) The crank rotates at a uniform speed of 300 rpm
 - (ii) The crank rotates at a speed of 300 rpm and is increasing at the rate of 120 rad/s^2 .

- 8. (a) Explain the procedure to construct Kleins construction to determine the velocity and acceleration of a piston an I.C. engine mechanism, when crank rotates at a uniform angular velocity.
 - (b) The driving crank AB of length 75 mm for the quick return mechanism, as shown in Fig. 3 revolves at a uniform speed of 200 rpm. Find acceleration of point Q, for the configuration shown, when the crank makes an angle of 60° with the vertical line of centers PA. [11]

Fig. 3 (For Q. 8(b))