Total No. of Questions : 12]

P2344

[4758]-82

[Total No. of Pages : 4

SEAT No. :

T.E. (Computer)

DIGITAL SIGNAL PROCESSING

(2008 Course) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1) What is discrete time system? Explain any four classification of discrete time system with example. [18]

OR

- Q2) a) Determine the values of power and energy of the following signals. Find whether the signals are power, energy or neither energy nor power signals.[15]
 - i) $x(n) = (1/3)^n u(n)$
 - ii) $x(n) = sign(\pi/4 n)$
 - iii) $x(n) = e^{2n} u(n)$
 - b) Write note on: Quantization error. [3]

[Max. Marks :100

- **Q3)** a) Define Fourier Transform, obtain it for x(n): $a^n u(n)$, |a| < 1 and state necessary conditions for existence of FT. [8]
 - b) Compute the circular convolution of the following sequence: [8]

$$x_1(n) = \{1, 1, 2, 1\}; x_2(n) = \{1, 2, 3, 4\}$$

OR

- c) Find the sequence x(n) if its fourier transform $X(e^{jw}) = 1$. [4]
- **Q5)** a) State and prove linearity property of Z- transform. Determine the ZT and ROC of the signal $x(n) = [3(2^n) 4(3^n)] u(n)$ [10]
 - b) What is meant by radix-2 FFT? How many multiplications and additions are required to compute N-point DFT using radix-2 FFT? Draw the 4-point radix-2 DIT FFT butterfly structure for DFT. [6]

OR

- **Q6)** a) State and prove convolution property of Z-transform. Compute the convolution x(n) of the signals $x_1(n) = \{1, -2, 1\}$ and $x_2(n) = \{1, 1, 1, 1, 1, 1\}$ [10]
 - b) Calculate DFT of the sequence $x(n) = cos(\pi n/2)$ where N = 4 using DIFFFT algorithm. [6]

SECTION - II

- Q7) a) An impulse response of discrete time system is u(n). What will be output of the system if the input is [8]
 - i) $\delta(n)$ and
 - ii) u(n)? Whether this system is stable?

[4758]-82

- b) A system has unit sample response h(n) given by $h(n) = -1/4\delta(n+1) + 1/2$ $\delta(n) - 1/4 \delta(n-1)$ [8]
 - i) Is the system BIBO stable?
 - ii) Is the filter causal?
 - iii) Compute the frequency response and plot it.

OR

- **Q8)** a) LTI system is described by $h(n) = (0.9)^n u(n)$. Calculate and plot magnitude response of the system. [8]
 - b) State and prove time delay property of unilateral Z transform. [8]
- Q9) a) Determine the unit sample response of the ideal low pass filter. Why it is not realizable? [8]
 - b) Justify: stable analog filter always gives stable digital filter. [6]
 - c) $H_a(s)$ is given as, $H_a(s) = \frac{1}{(s+1)^2}$ and $T_s = 0.1$ sec. Find H(z) using bilinear transform. [4]

OR

- Q10)a) State the characteristics of ideal filter. What are the advantages and disadvantages of digital filter over analog filter. [8]
 - b) The system function of the analog filter is given as $H_a(s) = \frac{(s+0.1)}{(s+0.1)^2+16}$. Obtain the system function of the digital filter using bilinear transformation which is resonant at $w_r = \pi/2$. [10]

- **Q11)**a) Obtain the system function H(z) and difference equation for $h(n) = \{1, -2, -2, 3\}$. Draw a direct form FIR filter structure. [8]
 - b) Compare DSP processor and general purpose processors. [8]

OR

- Q12)a) What is the use of DAG1 and DAG2 in ADSP 21XX family? With example explain the use of various memory pointer registers of DAGI and DAG2.[8]
 - b) Write a note on applications of DSP in image processing. [8]

 $\mathcal{E}\mathcal{E}\mathcal{E}$