Total No. of Questions : 12]

P2348

[4758]-86

T.E. (Computer Engg.)

SYSTEM PROGRAMMING & OPERATING SYSTEMS

(2008 Course) (Semester - II) (310252)

Time : 3 Hours]

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.

SECTION - I

- Q1) a) What features of assembly language makes it mandatory to design a two pass assembler? Explain with example. [6]
 - b) What is forward reference? How it is handled in a single pass assembler? **[6]**
 - c) Give format of different databases that are used for design of PASS -I of two pass assembler. [6]

OR

- Q2) a) In an assembly language program, certain action is required at 'n' places in the program. Under what condition would you code this action as macro or subroutine.[8]
 - b) Draw a flow chart for pass-I of two pass assembler design & explain.[10]
- Q3) a) What is loader? What are it's basic functions. [6]
 b) Write a note on MS-DOS linker. [6]
 - c) Explain the difference between .EXE and .DLL files. [4]

[Max. Marks :100

[Total No. of Pages : 4

SEAT No. :

P.T.O.

Q4)	a)	What are the databases required for design of direct link loader? Give their formats.[8]						
	b)	Drav	[8]					
Q5)	a)	Wri	[10]					
		i)	Distributed operating system.					
		ii)	Multiprogramming.					
		iii)	Real time scheduling.					
		iv)	Library functions					
		v)	System calls.					

- b) Define the essential properties of the following operating system [6]
 - i) Batch
 - ii) Time sharing
 - iii) Real time.

OR

- (*Q6*) a) Comment on: A program and process are two different concepts. [6]
 - b) Consider the following set of processes, with the length of the CPU burst time given in milliseconds: [10]

Process	Burst time	Priority
P1	10	3
P2	1	1
P3	2	5
P4	1	4
P5	5	2
	~	

[4758]-86

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

- i) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a non pre emptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1) scheduling.
- ii) What is the turn around time and waiting time of each process for each scheduling algorithm?
- iii) Which of the scheduling results in the minimal average waiting time (overall processes)?

SECTION - II

- (Q7) a) What is mutual exclusion? What are handware approaches for mutual exclusion.[8]
 - b) Explain deadlock detection algorithm with suitable example. [8]

OR

(Q8) a) Describe the producer consumer problem and give solution for it. [6]

b) Consider the following snapshot of a system:

	Allocation				Max				Available				
	А	В	С	D		А	В	С	D	А	В	С	D
P0	0	0	1	2		0	0	1	2	1	5	2	0
P1	1	0	0	0		1	7	5	0				
P2	1	3	5	4		2	3	5	6				
P3	0	6	3	2		0	6	5	2				
P4	0	0	1	4		0	6	5	6				

[10]

Answer the following questions using the banker's algorithm.

- i) What is the content of the matrix need?
- ii) Is the system in a safe state? If yes give the safe sequence.

[4758]-86

- **Q9)** a) Write short note on demand paging.
 - b) Discuss and compare with example various page replacement policies.[8]

OR

- Q10)a) What is variable partitioning scheme? Differentiate between external and internal fragmentation. [8]
 - b) Explain the best fit algorithm used for memory allocation. What are advantages and disadvantages of this algorithm. [8]
- *Q11*)a) Write an algorithm for disk scheduling algorithm using "shortest seek time first". [10]
 - b) Write and explain file structure and file attributes. [8]

OR

- **Q12)**a) Explain RAID and it's different levels. [10]
 - b) Why I/O buffering is necessary? State and explain different I/O buffering techniques. [8]

888