Total No. of Questions : 12]

P2345

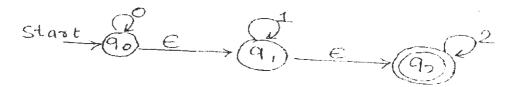
## [4758] - 83

[Total No. of Pages :4

**SEAT No. :** 

# T.E. (Computer Engineering) THEORY OF COMPUTATION (2008 Pattern) (310245)

*Time : 3 Hours] Instructions to the candidates:* 


- 1) Answers to the two sections should be written in separate answer books.
- 2) Assume suitable data if necessary.

#### **SECTION - I**

- *Q1*) a) Construct NFA and DFA for accepting all possible strings of zeroes and ones not containing 011 as a substring.[6]
  - b) Define the following terms with example.
    - i) Symbol
    - ii) Alphabet
    - iii) NFA
  - c) For w= {a,b}\*, design a Mealy machine that gives an output of 1 if the input string w ends in aba, otherwise output 0. [6]

#### OR

- Q2) a) Design Mealy and Moore machine for the following processes. For input from (0,1)\*, if input string ends in 110, output x, if input string ends in 101, output y otherwise output z. [10]
  - b) Consider the following NFA with  $\in$  -transitions. Convert this NFA to DFA. [6]



[Max. Marks : 100

[4]

Q3) a) Explain the closure properties and decision properties of regular languages.

- [6]
- b) Let  $L = \{0^n | n \text{ is prime}\}$  show that L is not regular. [6]
- c) Design the finite automata and then equivalent regular expression using Arden's theorem that accepts the set of all strings over the alphabet {a,b} with an equal number of a's and b's. such that each prefix has atmost one more a than b's and atmost one more b than a's. [6]

#### OR

Q4) a) Prove:[6]i)  $\Phi^* = \varepsilon (\Phi \text{ is null})$ ii)  $(r^*s^*) = (r+s)^*$ b) For each of the following draw DFA,[8]

- i)  $(11+00)^*$
- ii) (111 + 100)\*. 0
- c) Explain the application of regular expressions in unix with any one example. [4]

# **Q5)** a) Find a CFG for each of the following languages: [10]

- i) The set of odd length strings in  $\{a, b\}^*$  with middle symbol a
- ii) The set of even length strings in  $\{a,b\}^*$  with the two middle symbols equal.
- iii) The set of odd length strings in {a,b}\* whose first, middle and last symbols are all same.
- b) Prove that  $L = \{a^i b^i c^i | i > 1\}$  is not a CFL. [6]

#### OR

*Q6*) a) Convert the following grammar to Griebach Normal form. [6]

 $S \rightarrow ABA |AB|BA|AA|A|B$ 

 $A \rightarrow aA|a$ 

 $B \rightarrow \! bB \mid \! b$ 

[4758]-83

- b) Define Normal Forms in grammars with the help of suitable examples.[4]
- For the right linear grammar given below, obtain an equivalent left linear grammar.
  - $S \rightarrow \! 10A \,|\, 01$

 $A \rightarrow 00A \mid 1$ 

# **SECTION - II**

- Q7) a) Design push down automata (PDA) for accepting the set of all strings over {a, b} with an equal number of a's and b's. The string should be accepted both by [10]
  - i) Final state
  - ii) Empty stack
  - b) Construct push down automata (PDA) for accepting  $L = \{a^n b^m a^n | m, n \ge 1\}$ . [6]

## OR

- *Q8)* a) Prove "Let L be a language accepted by deterministic PDA, then the complement of L, can also be accepted by a DPDA". [4]
  - b) Show that if L is accepted by a PDA in which no symbols are removed from the stack, then L is regular. Justify with appropriate example. [6]
  - c) Give a PDA and FA, which of these machines is capable of accepting a palindrome string? Justify your answer for both machines. [6]
- **Q9)** a) Show that the language  $L = \{a^n b^n c^n | n \ge 0\}$  is Turing decidable.[6]
  - b) Construct POST machine for the language  $(a^nb^n | n \ge 0)$ . [6]
  - c) Design a Turing machine for accepting the strings with an equal number of 0's and 1's.
    [6]

OR

[4758]-83

- *Q10*)a) Explain following Turing Machine.
  - i) Single infinite length TM
  - ii) Multi-tape TM
  - b) Write a short note on universal TM. [6]

[6]

- c) Design Post Machine that accepts the strings of 'a' and 'b' having odd length and the element at the center is 'a'. [6]
- Q11)a) Show that the set of languages L over {0,1}, so that neither L and L' is recursively enumerable, is uncountable. [6]
  - b) What is un-decidability? How do you prove that a problem is undecidable? Prove that the blank tape halting problem is un-decidable.[6]
  - c) Prove that the set of real numbers R is not countable. [4]

#### OR

- **Q12)**a) Write a short note on Post Correspondence Problem. [4]
  - b) Show that if  $L_1$  and  $L_2$  are recursive languages and if L is defined as:[6]

 $L = \{w | w \text{ is in } L_1 \text{ and not in } L_2 \text{ or } w \text{ is in } L_2 \text{ and not in } L_1\}$ , then prove or disprove that L is recursive.

c) Show the following problem is un-decidable. "Given a TM T, there exist some string on which T halts". [6]

## $\diamond \diamond \diamond$