Total No. of Questions: 12]	SEAT No. :
D2325	[Total No. of Pages : 2

[4758]-60

T.E. (Electronics) **DATA COMMUNICATION**

(2008 Course) (Semester-I) (304202)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

- Answer any 3 questions from each section. 1)
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn whenever necessary.
- Figures to the right indicate full marks. 4)
- Use of electronic pocket calculator and steam tables is allowed. 5)
- Assume suitable data if necessary. *6*)

SECTION-I

- Define cross correlation function. State and explain any three properties **Q1)** a) of cross correlation function. [8]
 - Explain noise reduction techniques Low Pass Filter and Matched Filters. b)

[8]

OR

- Explain in brief the different types of random processes with suitable *Q2*) a) examples.
 - Explain different properties of CDF and PDF for discrete and continuous b) random variables. [8]
- For the sequence 10011011, sketch the waveform using the following *Q3*) a) data formats: [10]
 - i) Unipolar Rz
 - Polar NRz ii)
 - Alternate Mark Inversion
 - Split phase Manchester coding. Draw the corresponding spectrum of the above formats and explain.
 - What is synchronizer? Explain any one type of bit synchronizer. b) [6]

Q4)	a)	Why synchronization in necessary in data communication? Explain bit and frame synchronization using suitable sketch. [8]
	b)	What is inter symbol interference? Explain its cause and remedies to avoid it. [8]
Q5)	a)	For a $(6, 3)$ systematic LBC, three parity bits are given as, C4 = d1 + d2, C5 = d1 + d3, C6 = d1 + d2 + d3. [10]
		i) Determine generator matrix.
		ii) Construct code generated by this matrix.
		iii) Determine error capacity of the code.
		iv) Prepare syndrome decoding table.
		v) If received vector is 101011, determine message word.
	b)	Explain in detail Viterbi decoding algorithm with an example. [8]
		OR
Q6)	Writ	es short notes on: [18]
	a)	Binomial, Poisson's.
	b)	Eye diagram.
	c)	Linear block codes.
	d)	Error correction and detection techniques.
		SECTION-II
Q7)	a)	What is mutual information? How channel capacity is related to mutual information? Explain with mathematical support. [8]
	b)	Explain Huffman coding and decoding with example. [8]
		OR
Q8)	a)	What is entropy? For a discrete memory less source what is the upperbound on entropy. Show that equiprobable messages results to maximum entropy. [8]
	b)	Explain Shanon - Fano coding with example. [8]
[475	58]-6¢	0 2

- **Q9)** a) Explain the transmission and reception of BPSK with mathematical expression. [8]
 - b) In a digital communication system, the bit rate of NRZ data stream is 1 Mbps and carrier frequency of transmission is 100 MHz. Find the symbol rate of transmission and band width requirement of the channel in the following cases. [8]
 - i) BPSK
 - ii) QPSK

OR

- **Q10)**a) Explain the necessity of continuous PSK. State and explain the basic principles of MSK with block schematic and suitable waveforms. [8]
 - b) Explain Phase diagrams and signal constellations diagrams of QPSK.

[8]

- **Q11)**a) Design a 4-bit PN sequence generator and verify the properties of maximum length sequence. Assume that initial state is 1000. [8]
 - b) What is the difference between multiplexing and multiple access techniques? Compare TDMA, FDMA and CDMA. [10]

OR

Q12) Write short notes on:

[18]

- a) Binary symmetric channel.
- b) Continuous and slotted ALOH.
- c) Frequency Hopped Spread Spectrum.
- d) DS-SS.

••••