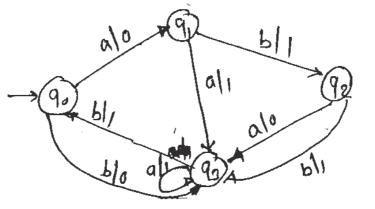
Total No. of Questions : 12]

P2284

[4758] - 103 T.E. (I.T.) THEORY OF COMPUTATION (2008 Course) (Semester - I) (314442)

Time : 3 Hours] Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data if necessary.


SECTION - I

- Q1) a) Design FA that rear strings made up of letters in the word CHARIOT and accept those string that contain 'CAT' as a substring.[9]
 - b) Find Mealy and Moore m/c for following: For I/P $\Sigma = \{0,1,2\}$, print the residue modulo 5 of the i/p treated as a ternary no. [9]

OR

(Q2) a) Design Moore m/c from given mealy m/c

[9]

P.T.O.

[Max. Marks : 100

[Total No. of Pages :4

SEAT No. :

Q3) a) Write RE for the following

- i) $\sum = \{a,b\}$, Set of all strings that have at least one a & at least one b.
- ii) $\sum = \{0,1\}$, Set of all strings in which every 0 followed by immediately 11.
- iii) $\sum = \{0,1\}$, Set of Strings begin or end with 00 or 11
- iv) $\sum = \{a,b\}$, Set of strings, such that all the string do not have substring 'ab'.
- b) Describe English language for following RE: [8]

 $(1+01+001)^*$. (\in +0+00)

OR

Q4) a)	Give RE and FA for	[7]
	$\mathbf{L} = \mathbf{L}_1 \cap \mathbf{L}_2 \sum = \{0, 1\}$	
	Where $L_1 = All$ the string of even length	
	$L_2 =$ All the starting with b	
b)	Give the limitation of FA and Application of RE, FA.	[3]
c)	Find DFA from given RE $(1.1 + 0)^*$. 1*.	[6]
		F 43

Q5) a) Application of CFG: Explain the detail with an example [4]

[4758]-103

[9]

[8]

2

- b) Give CFG for following languages
 - i) All strings with at least two a's on them
 - ii) Matching parenthesis $\Sigma = \{(,)\}$
 - iii) All string without substring 'aaa' $\Sigma = \{a, b\}$.
 - iv) R = bba * bb + bb

OR

Q6) a) Test whether the following grammars is ambiguous or not, if it is ambiguous then remove ambiguity [8]

 $S \rightarrow Ab, A \rightarrow a, B \rightarrow C | b, C \rightarrow D, D \rightarrow E, E \rightarrow a.$

b) Find CNF for the given grammar:

 $S \rightarrow ABAB$ $A \rightarrow aA \models B$ $B \rightarrow bA \models E$

SECTION - II

(Q7) a) Convert following right linear grammar to left linear grammar stepwise[8]

 $S \rightarrow 0A | 1B$ $A \rightarrow 0C | 1A | 0$ $B \rightarrow 1B | 1A | 1$ $C \rightarrow 0 | 0A$

b) Show that the context free languages are closed under union, concatenation and kleen closure operations. [8]

OR

Q8) a) Convert following Regular expression to Regular Grammar [8]
 (ab +a)* (aa +b)

[4758]-103

[8]

b) Is the language L $\{a^n b^m | n \neq m\}$ context free? If yes write CFG defining the above language. If no, prove it. [8]

Q9) a) Construct PDA for accepting language of following CFG: [9]

$$S \rightarrow bA \mid aB,$$

 $A \rightarrow bAA \mid aS \mid a,$
 $B \rightarrow aBB \mid bS \mid b$

b) Design a PDA accepting by empty store/stack of the following language: $L = \{a^{m} b^{m} c^{n} | m, n > = 1\}$ [9]

OR

- Q10)a) Construct a CFG for following PDA: [10] $M = \{ [q_0,q_1], [a,b], [Z_0,Z], \partial, q_0, Z_0, \theta \} \ \partial \text{ is given by}$ $\partial (q_0, b, Z_0) = \{ (q_0, Z, Z_0) \partial (q_0, \in, Z_0) = \{ (q_0, \in) \}$ $\partial (q_0, b, Z) = \{ (q_0, ZZ) \} \partial (q_0, a, Z_0) = \{ (q_1, Z) \}$ $\partial (q_1, b, Z) = \{ (q_1, \in) \} \partial (q_1, a, Z_0) = \{ (q_0, Z_0) \}$
 - b) Design a PDA accepting by empty store/stack of the following language: $L = \{a^{n} b^{2n} \mid n \ge 1\}.$ [8]
- **Q11)**a) Construct TM to that can compute proper subtraction, i.e. m n, where m and n are positive integers m n is defined as m n if m > n and 0 if m <= n.
 - [8]
 - b) Explain in detail Halting problem of Turing m/c. [8]

OR

- **Q12)**a) Design a TM for to copy the string, $\Sigma = \{a, b\}$. [8]
 - b) Give the short note on following: [8]
 - i) UTM
 - ii) Application and limitation of TM.

$$\phi \phi \phi$$

[4758]-103

4