Total No.	of Questi	ons:	12]
-----------	-----------	------	-----

SEAT No.:	

P2255

[4758]-12

[Total No. of Pages: 3

T.E. (Mechanical and Automobile Engineering) COMPUTER ORIENTED NUMERICAL METHODS (2008 Course) (Semester-I) (302045)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION-I

- **Q1)** a) Draw Flow chart for 'Modified Newton Raphson's' Method. [8]
 - b) Apply the Simpson's $1/3^{\text{rd}}$ rule to evaluate the integral, $I = \int_{0.5}^{0.7} \sqrt{x} e^x dx$.

[8]

[8]

[6]

OR

- Q2) a) Draw Flow chart for 'Gauss Quadrature 3 Point Formula'. [8]
 - b) Apply Newton Raphson Method to determine the root of equation $f(x) = \cos x xe^x = 0$ to an accuracy of 0.0001, take x1 = 0.3. [8]
- Q3) a) Draw flowchart for 'Newton's Forward Difference' Interpolation. [8]
 - b) Determine y' and y'' at x = 0 for following data

x	0	1	2	3	4
y	2	5	10	22	34

OR

- **Q4)** a) Explain Interpolation, Inverse Interpolation and Extrapolation.
 - b) Find f(9) using Lagrange's Interpolation [10]

X	5	7	11	13	17
F(x)	150	392	1452	2366	5202

Q5) a) Explain partial pivoting with example.

[6]

b) Solve following set of equations using Gauss Elimination Method. [12]

$$3X + 6Y + Z = 16$$

$$2X + 4Y + 3Z = 13$$

$$X + 3Y + 2Z = 9$$

OR

- Q6) a) Draw Flow Chart for finding values of unknown variables by Back Substitution in Gauss Elimination method, when the coefficient matrix is available in upper triangular format.[6]
 - b) Using Gauss Siedel method, solve the following set of simultaneous equations up to two decimal place accuracy. Do Partial Pivoting. [12]

$$5X + Y - Z = 4.7$$

$$X + 8Y + 2Z = 15.7$$

$$2X + 3Y + 10Z = 27.1$$

SECTION-II

Q7) a) Explain the following with suitable example

[6]

- i) Significant Digit.
- ii) Inherent Error.
- iii) Rounding Error.
- iv) Truncation Error.

b) Fit a straight line through following set of points

[10]

X	10	15	20	25	30
y	0.750	0.935	1.100	1.200	1.300

OR

Q8) a) Explain Least Square Method and derive equation to fit a straight line through a set of points. [4]

2

- b) Draw flow chart to fit an equation $y = ax^b$ using Least Square Method.
- c) The value of u is given by equation, $u = 3v^7 6v$. Find the absolute error, relative error and percentage error in u at v = 1 if the error in v = 0.05.
- **Q9)** a) Draw flow chart to solve Ordinary differential equations using Euler's method. [8]
 - b) Given $\frac{dy}{dx} = 3x + \frac{y}{2}$. With initial condition as y(0) = 1, find y(1) with step size of 0.5. Use RungeKutta 4th order method. [8]

OR

- **Q10)**a) Draw flow chart to solve simultaneous first order differential equations using RK4 method. [8]
 - b) Solve the equation $\frac{dy}{dx} = \frac{(y+xy)}{x}$. Given the initial condition y(1) = 2.718, find y(1.2) taking step size of 0.1 and accuracy of 0.001 using Modified Euler's formula. [8]
- Q11)a) Draw flow chart to solve Parabolic Equation by Explicit Method. [8]
 - b) Solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ over the square with x = y = 0 and x = y = 3, with u = 0 on the boundary and mesh length 1. [10]

OR

- **Q12)**a) Draw flow chart to solve Laplace Equation.
 - b) Evaluate the pivotal values of the following equation taking h = 1 and upto one half of the period of vibration,

[8]

$$16\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$

Given that u(0, t) = u(5, t) = 0; $u(x, 0) = x^2 (5 - x)$ and $\frac{\partial u}{\partial t}(x, 0) = 0$.[10]