Total No. of Questions : 12]

P2262

[Total No. of Pages : 6

SEAT No. :

[4758]-20

T.E. (Mechanical)

REFRIGERATION AND AIR CONDITIONING

(2008 Course) (Semester-II) (302051)

Time : 3 Hours]

[Max. Marks : 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of psychrometic chart, land steam tables are allowed.
- 6) Assume suitable data, if necessary, state clearly the assumption made.
- 7) Use of calculator is allowed.

SECTION-I

- Q1) a) Draw skeleton of p-h diagram and mark the property lines on it. Sketch ideal vapour compression cycle on T-s and p-h diagrams and mark the name of processes.
 - b) Air enters the compressor of an ideal Brayton Refrigeration Cycle at 1atm and 270 K with a volumetric flow rate of 1.5 m³/s. If the compressor pressure ratio is 3 and the turbine inlet temperature is 300 K, determine,

[8]

- i) The net power input,
- ii) The refrigeration capacity,
- iii) Coefficient of performance.

Take $\gamma = 1.4$ and $C_p = 1.005$ kJ/kg.K.

c) State any four applications of refrigeration.

[2]

OR

(Q2) a) State advantages and disadvantages (four each) of air refrigeration. [4]

- b) An ideal vapour compression system uses R-12 as refrigerant. The system uses an evaporation temperature of 0°C and condenser temperature of 40°C, the capacity of the system is 7 TR. Determine: [8]
 - i) The mass flow rate of refrigerant.
 - ii) Power required to run the compressor,
 - iii) Heat rejected in the condenser, and
 - iv) COP of the system.

Use the properties of R-12 from table given below:

Temp	Pressure	h_{f}	h_{g}	\mathbf{s}_{f}	$\mathbf{S}_{\mathbf{g}}$
°C	bar	kJ/kg	kJ/kg	kJ/g	kJ/kg.K
0	3.087	36.05	187.53	0.142	0.696
40	9.609	74.59	203.2	0.727	0.682

Take C_p for superheated vapour as 0.6 kJ/kg.K.

- c) Explain any one non-conventional refrigeration process with graphical support. [4]
- Q3) a) Discuss the effect of condenser and evaporator pressures on performance of VCC with the help of p-h or T-s diagram. [8]
 - b) Explain with suitable diagram the working lithium bromide vapour absorption system. [7]
 - c) State any three desirable properties of refrigerant solvent combination. [3]

OR

Q4) a) Compare vapor absorption system with vapour compression system.

[4]

- b) Draw actual vapour compression cycle on p-h diagram and discuss the losses in the cycle and its effect on its performance. [8]
- c) Prove that the maximum COP of an ideal vapour absorption refrigeration system is given by

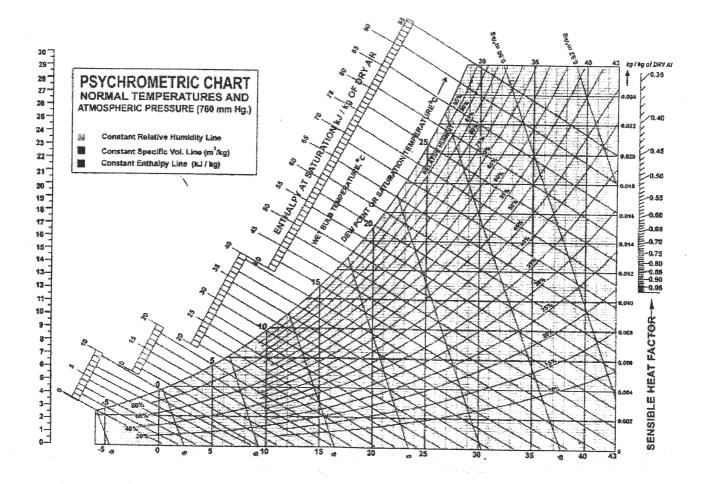
$$\mathbf{COP}_{\max} = \left(\frac{T_L}{T_C - T_L}\right) \times \left(\frac{T_G - T_C}{T_G}\right)$$

Where $T_L =$ evaporator temperature, $T_C =$ Condenser temperature and $T_G =$ generator temperature. [6]

- Q5) a) Draw the neat sketch of vapour compression system with two evaporators equipped with individual compressors and expansion valve and common condenser. Sketch it on p-h diagram and deduce mathematical formulation of its COP.[10]
 - b) State desirable properties of refrigerant. List some eco-friendly refrigerant and state why eco-friendly refrigerant must be used. [6]

OR

- *Q6)* a) State any four limitation of single stage vapour compression refrigeration cycle.[4]
 - b) Sketch the block diagram of two stage VCC with flash inter-cooling. Draw its p-h diagram. Mark the components and processes. [4]
 - c) Write a short note on any two from followings: [8]
 - i) Global warming potential (GWP).
 - ii) Cascade refrigeration system.
 - iii) Refrigerant recovery, reclaim and recharge.


SECTION-II

Q7) a)		Define: [6					
		i)	SHF,				
		ii)	Relative Humidity,				
		iii)	Dew point temperature.				
	b)	Expl char	lain process of adiabatic mixing of two air streams with a psychometric t. [4]				
	c)		ixture of dray air and water is at a temperature of 21°C under a tota sure of 736 mm of Hg. The dew point temperature is 15°C. Find: [6]				
		i)	Partial pressure of water vapour.				
		ii)	Relative humidity.				
		iii)	Specific humidity.				
			OR				
Q8) a)		Defi	ne: [6]				
		i)	GSHF,				
		ii)	Specific Humidity,				
		iii)	Wet bulb temperature.				
	b)	Exp	lain process of adiabatic saturation with a psychometric chart. [4]				
	c)	50% is 10	In a heating application, moist air enters a steam heating coil at 10° C, 50% RH and leaves at 30°C. Calculate the sensible heat if mass flow rate is 100 kg d.a./sec. Also calculate the mass flow rate of steam if it enters at 100°C, saturated and condensate leaves at 80°C. [6]				

Q9) a)	Compare: Unitary and Central air conditioning system.						
b)	Write a note on Summer Air Conditioning.	[4]					
c)	Explain any one expansion device with a neat sketch.	[6]					
OR							
Q10) a)	Explain Fan Coil Unit with a neat sketch.	[6]					
b)	Write a note on Winter Air Conditioning.	[4]					
c)	Explain any one type of condenser with a neat sketch.						
Q11) a)	How ducts are classified?	[3]					
b)	Write a note on Cold Storage.	[6]					
c)	Explain any one method of duct design.						
c)	Write a note on Duct Materials.	[3]					
OR							
Q12) a)	What are the methods of Food Preservation?	[4]					
b)	Write a note on CAMA Storage.	[6]					

c) Derive expressions for equivalent diameter of a rectangular duct when the velocity of air passing through the rectangular and circular duct is same.

Hence find the size of a rectangular duct of aspect ratio 1.5 which should replace a circular duct of 40cm diameter and velocity of air is 440 m/min. [8]

....