Total No.	of Questions	:	10]
-----------	--------------	---	-----

D7 4	.04
Γ $Z4$	V4

[4758]-565

SEAT No.:		
[Total	No. of Pages	4

T.E. (Electronics)

DISCRETE TIME SIGNAL PROCESSING

(2012 Course) (End-Sem.) (Semester - II) (304210)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) An analog signal is represented as $x(t) = 5\cos(2\pi 2000t) + \cos(2\pi 5000\pi t)$ [6]
 - i) What is the Nyquist rate for the signal?
 - ii) Suppose, we sample this signal with a sampling frequency $F_s = 8kHz$, what is the folding frequency?
 - iii) Write the equation of sampled signal.
 - b) If the DFT of the sequence $x(n) = \{1 \ 2 \ 3 \ 4\}$ is given by $X(k) = \{10 \ -2 + j2 \ -2 \ -j2\}$. What will be the DFT of time reversed sequence? [4]

OR

Q2) a) The analog signal is represented as

$$x(t) = \sin(10\pi t) + 2\sin(20\pi t) - 2\cos(30\pi t)$$

- i) What is the Nyquist rate for this signal?
- ii) If the signal is sampled with a sampling frequency of 20Hz, what is the discrete time signal obtained after sampling?
- iii) What is the recovered signal?
- b) Complete 4 point DFT of the sequence $x(n) = \cos \frac{n\pi}{2}$ using DIF FFT algorithm. [4]

[6]

- **Q3)** a) Compute the 4 point DFT of the sequence $x(n) = \{4 \ 3 \ 2 \ 1\}$ by linear transformation.
 - b) A causal discrete time system is described by

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n).$$
 [6]

- i) Determine the system function H(z).
- ii) Compute the impulse response of the system.

OR

- **Q4)** a) Find the z-transform of $x(n) = n^2 u(n)$. [4]
 - b) Compute $x_1(n)$ N $x_2(n)$ if

$$x_1(n) = \delta(n) + \delta(n-1) - \delta(n-2) - \delta(n-3)$$

$$x_2(n) = \delta(n) - \delta(n-2) + \delta(n-4)$$
 [6]

- **Q5)** a) Design a bandpass linear phase FIR filter having cut-off frequencies of $\omega_{c_1} = 1$ rad/sample and $\omega_{c_2} = 2$ rad/sample. Use rectangular window function.
 - b) Write a note on window functions. [4]
 - c) Show that symmetric FIR filter has linear phase response. [7]

OR

Q6) a) Using frequency sampling technique, determine the filter coefficients, length of filter is 17.

Specifications:

$$H_d(e^{j\omega}) = \begin{cases} e^{-j8\omega} & 0 \le \omega \le \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le \omega \le \pi \end{cases}$$
 [8]

b) Obtain direct form I & cascade form realisation for the transfer function given by

$$H(z) = \left(1 - \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}\right)\left(1 - \frac{1}{8}z^{-1} - \frac{1}{2}z^{-2}\right)$$
 [9]

Q7) a) An analog filter has the transfer function

[4]

$$H(s) = \frac{1}{s+1}$$

Using bilinear transformation, determine the transfer function of digital filter H(z) and also write the difference equation of digital filter. Assume $T=1\,$ sec.

b) Using bilinear transformation, design a butterworth filter which satisfies the following conditions. [8]

$$0.8 \le \left| H(e^{j\omega}) \right| \le 1$$
 $0 \le \omega \le 0.2\pi$
 $\left| H(e^{j\omega}) \right| \le 0.2$ $0.6 \le \omega < \pi$ AssumeT = 1sec.

c) Realize the following second order system in direct form I & direct form II. [5]

$$y(n) = 2r \cos(\omega_0) y(n-1) - r^2 y(n-2) + x(n) - r\cos(\omega_0) x(n-1)$$

OR

Q8) a) For the analog system transfer function

$$H(s) = \frac{1}{(s+1)(s+2)}$$
, Assume T = 1 second

determine H(z) using impulse invariant technique. [5]

- b) What are the effects of finite word length in digital filter IIR filters. [5]
- c) Determine parallel realisation of the IIR digital filter transfer function [7]

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z+1)(z+2)}.$$