Total No	. of Qu	nestions: 10]	SEAT No. :	
P2401		[4758] - 562	[Total No. of Pages :3	
		T.E. (Electronics)		
		EMBEDDED PROCESSO	RS	
	(20	012 Course) (End-Sem.) (Semester	·- II) (304211)	
Time: 3	Hours]	1	[Max. Marks: 70	
		the candidates:		
1)		diagrams must be drawn wherever necessary.		
<i>2) 3)</i>	Use of	es to the right indicate full marks. f logarithmic tables, slide rule, Mollier charts, team tables is allowed.	electronic pocket calculator	
4)	Assun	ne suitable data, if necessary.		
Q1) a)	Des	scribe complete memory map of LPC 2148	B. [4]	
b)	Exp	plain the PINSEL registers.	[4]	
	i)	PINSEL0		
	ii)	PINSEL 1		
	iii)	PINSEL 2		
	iv)	IODIR		
c)	Exp	plain the following instruction (Any two).	[2]	
	i)	$MUL R_3, R_2, R_1$		
	ii)	LDR R_0 , $[R_1]$		
	iii)	SWPB R_2 , R_1 , $[R_4]$		

OR

Q2) a) Describe CPSR and SPSR of ARM 7.

[4]

b) Draw interfacing diagram of temperature sensor (LM 35: 10mV/°C) and also write a program to display temperature on LCD. [6]

P.T.O.

Q3)	a)	Draw and explain interfacing of I2C EEPROM with LPC 2148. Write embedded 'C' program for the same.	te a [6]
	b)	Explain UART block in LPC 2148.	[4]
		OR	
Q4)	a)	Write a embedded 'C' program for generation of square wave using chip DAC of LPC 2148.	on [6]
	b)	Explain different operating modes in ARM 7.	[4]
Q5)	a)	Compare cortex A, cortex R and cortex M processors. What are improvement of ARM cortex M_3 over ARM 7.	the [8]
	b)	Explain CMSIS standard with structure in detail.	[6]
	c)	Explain thread and handler with the help of state diagram.	[2]
		OR	
Q6)	a)	Explain features of embedded operating system and explain need developing complex application.	for [8]
	b)	Draw and explain block diagram of ARM cortex M ₃ .	[8]
Q7)	a)	Draw interfacing diagram of RGB LED with LPC 1768 also we embedded 'C' program to generate different colours.	rite [6]
	b)	Explain features of NVIC in LPC 1768.	[4]
	c)	Describe system control block of LPC 1768.	[6]
		OR	
Q8)	a)	Interface 7 segment display with LPC 1768 and also write embedd 'C' program to display 0 to 9.	ded 10]
	b)	What are the different clock sources available with LPC 1768.	[6]

Q9)	Write	e a short note on following block in LPC 1768. (Any three).	[18]		
	a)	Ethernet			
	b)	SDCARD			
	c)	USB			
	d)	CAN			
		OR			
Q10)) a)	Write application of CAN, Ethernet, USB with real world example. [
	b)	Draw and explain interfacing diagram of DC motor using PWM of L 1768 also write embedded 'C' program for the same.			
	c)	Draw and explain interfacing of TFT with LPC 1768.			
		$\dot{\Phi}$ $\dot{\Phi}$			