May 2015

3

[Total No. of Pages :4

(2)

Total No. of Questions: 10]

P2429

SEAT No.:

[4758] - 600

T.E. (I.T.)

THEORY OF COMPUTATION

(2012 Course) (End-Sem.) (Semester - I) (314442)

Time: 2 1/2 Hours/

[Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Construct Moore machine equivalent for the given Mealy machine. [6]

- b) Let $\Sigma^* = \{a,b\}$. Write RE to define language consisting of strings such that
 - i) Strings without substring bb
 - ii) Strings that have exactly one double letter in them.

OR

- Q2) a) Design a DFA for accepting L over {0,1} such that every substring of length 4 contains at least three 1's. [4]
 - b) Define Finite Automata and justify why palindrome strings cannot be checked for by FSM. [4]
 - c) With examples define Regular Expression.

[2]

Find RE for the following DFA using Arden's theorem. b)

[4]

OR

Give the CFG for $\Sigma = \{a,b\}$. **Q4**) a)

[4]

- To generate strings in which no consecutive b's can occur but a's can be consecutive.
- Language is $\{a^{x}b^{y}/x \neq y \text{ and } x,y > 0\}$.
- Convert the given grammar into GNF: b)

[4]

 $S \rightarrow AB$

 $A \rightarrow BS|b$

 $B \rightarrow SA|a$

Write a note on applications of CFG. c)

[2]

- Construct a PDA to accept the language $\frac{1}{2}$ where $\frac{1}{2}$.[6] **Q5)** a)
 - Construct PDA equivalent to the given CFG: b)

[8]

 $S \rightarrow OA1/OBA$

 $A \rightarrow S01/0$

 $B \rightarrow 1B/1$

c) Compare PDA and FA.

[4]

OR

- **Q6)** a) Construct a post m/c to accept the language $\{a^nb^{n+1}/\text{where } n > = 1\}.[8]$
 - b) Construct a CFG equivalent to PDA

$$M = (\{q_o, q_1\}, \{0, 1\}, \{B, R\}, \{\delta, q_o, R, \phi\}) \text{ where } \delta \text{ is}$$
 [8]

$$\delta(q_o, o, R) = (q_o, BR)$$

$$\delta(q_0, o, B) = (q_0, BB)$$

$$\delta(q_0, 1, B) = (q_1, B)$$

$$\delta(q_1, 1,B) = (q_1, B)$$

$$\delta(q_1, o, B) = (q_1, \varepsilon)$$

$$\delta(q_1, \land, R) = (q_1, \varepsilon)$$

c) Define Post Machine.

[2]

Q7) a) Design a TM that computes the function

[12]

$$f(x, y) = x + y$$
 if $x > = y$
= 0 if $x < y$ where x & y are unary.

Simulate the working of the TM for x = 2, y = 2.

b) Explain the diff. types of turing machines.

[4]

OR

- Q8) a) Define Turing Machine and construct a TM which recognizes strings consisting of equal no. of 0's and 1's.[8]
 - b) Compare FA, PDA and TM.

[4]

c) Explain the halting problem of turing machines.

[4]

Q9) a) Explain with example Turing Reducibility.

[6]

b)	Prove that the follow	wing decision	problems are recursive.	[10]
----	-----------------------	---------------	-------------------------	------

- i) Two DFA's are equivalent or Not.
- ii) NFA accepts a word or not.

OR

Q10)a) Define and differentiate recursive languages and recursively enumerable languages. [6]

b) P.T. the following decision problems are recursive

[10]

- i) DFA accepts a word or not
- ii) CFG G generates the string w or not.

