P2368 [4758] - 513

[Total No. of Pages :4

T.E. (Mechanical) (Common to Mech. S/W, Automobile) HEAT TRANSFER

(2012 Course) (302042) (End Semester) (Semester - I)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Assume suitable data if necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of Scientific calculator is allowed.
- Q1) a) Derive three dimensional general heat conduction equation in Cartesian coordinates for anisotropic material for unsteady state condition with uniform internal heat generation.
 - b) What is unsteady state? Define internal temperature gradient. When can it be neglected? [3]

OR

- **Q2)** a) Write a note on temperature boundary condition and heat flux boundary condition. [4]
 - b) A long hollow cylinder has inner and outer radii as 10cm and 20cm respectively. The rate of heat generation is 1 kW/m³, the thermal conductivity of cylinder material is 0.2 W/mk. If the maximum temperature occurs at radius of 15cm and temperature of Outer surface is 60°C, find temperature at the inner surface of the cylinder. [6]
- **Q3)** a) Explain critical radius of insulation.

[4]

b) A 5cm diameter steel ball, initially at a uniform temp of 450°C is suddenly placed in an environment at 100°C with h = 10 W/m²K. Steel properties: Cp = 460 J/kgK, density = 7800 kg/m³, K = 35 W/mK. Calculate the time required for the ball to attain a temperature of 150°C. [6]

OR

(04) a) Write a note on Overall heat transfer coefficient.

- [4]
- b) A cylindrical metal rod of 5 cm diameter and 20 cm long with thermal conductivity 225 W/mK protrudes in atmosphere at 30°C. It projects from furnace wall at 300°C. A convective heat transfer coefficient of air is 10 W/m²K. Determine temperature at the free end of the rod assuming it as a fin insulated at end. [6]
- Q5) a) Explain physical significance of any four dimensionless numbers used in convection.
 - b) Water flows at the rate of 360kg/hr through a metallic tube of 10mm diameter and 3m length. It enters the tube at 25°C. Outer surface of the tube is maintained at a constant temperature of 100°C. Calculate the exit temperature of the water. [8]

Properties of water:

$$\mu$$
=5.62 × 10⁻⁴ kg/ms; C_p = 4174J/kgK; K = 0.664W/mK.

Use the following correlation:

$$N_u^{}=0.023Re^{0.8}\;Pr^{0.4}$$
 for turbulent flow

$$N_{ij} = 3.66$$
 for laminar flow

OR

- **Q6)** a) Write a note on velocity boundary layer and thermal boundary layer. [6]
 - b) Explain mechanism of natural convection. Distinguish it from forced convection. [4]
 - c) A rectangular plate of length 7cm and width 4cm maintained is at 115°C. It is exposed to still air at 25°C on both sides. Calculate convective heat transfer rate if smaller side of the plate is held vertical. [6]

Use Correlation $N_{\rm u} = 0.59 \, (Gr.Pr)^{0.25}$

For air at 70°C, K = 0.03 W/mK; Pr = 0.697; kinematic viscosity $v = 2.076 \times 10^{-6}$ m²/s.

Q7) a)	State and explain follo	owing laws of radiation:	
\mathcal{L}'	Diate and explain forte	oving lavis of faction.	

[10]

- i) Planck's Law
- ii) Wein's Law
- iii) Lambert's cosine rule
- iv) Kirchoff's Law
- v) Stefan Boltzmann Law
- b) Two large parallel steel plates of emissivities 0.8 and 0.4 are held at temperatures 1100 K & 500 K respectively. If a thin radiation shield of emissivity 0.09 is introduced between two plates, determine radiation heat exchange in W/m² with and without radiation shield. [6]

Use $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$.

OR

Q8) a) What is shape factor? What is shape factor for a plane surface and convex surface with respect to itself? [10]

Find the shape factor of following with respect to itself:

- i) Cylindrical cavity of diameter D and depth H,
- ii) Hemispherical cavity of diameter D,
- iii) Conical hole of diameter D and depth H
- b) Consider two concentric spheres 'A' and 'B' with diameter of 200mm and 300mm respectively. Space in between these two spheres is evacuated. Liquid air at -153°C is stored inside sphere 'A'. The surfaces of spheres 'A' and 'B' facing each other are coated with aluminium foil (ε = 0.03). Latent heat of vaporization of liquid air is 209.35 kJ/kg. If the system is kept in a room where ambient temperature is 30°C,

Calculate the rate of evaporation of liquid air.

[6]

- **Q9)** a) What is the significance of critical heat flux in design of evaporators? Explain different regimes in pool boiling curve with neat sketch. [10]
 - b) What is LMTD for a heat exchanger? Derive an expression for LMTD of parallel flow heat exchanger. [8]

OR

- **Q10)**a) Explain dropwise condensation and filmwise condensation. compare these two. [6]
 - b) A parallel flow heat exchanger is to be designed to cool oil (C_p = 2.1 kJ/kgK, 20 kg/min) from 70°C to 40°C by using cold water (C_p = 4.2 kJ/kg K, 50 kg/min), available at 30°C. The overall transfer coefficient is 133 W/m²K. Find the area of heat exchanger, outlet temperature of water and effectiveness.
 - c) Explain effectiveness and NTU for a heat exchanger. [4]

+ + +