Total No. of Questions :6]

SEAT No.:

P107

APR. -16/TE/Insem. - 44

[Total No. of Pages :2

T.E. (Information Technology)

DESIGNAND ANALYSIS OF ALGORITHMS

(2012 Pattern) (314449) (Semester - II)

Time: 1Hour]

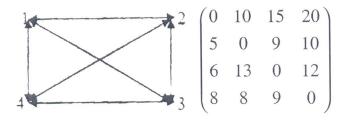
[Max. Marks:30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) Reorder the following complexities from the smallest to the largest. [10]
 - a) $nlog_1, n_1 + n_2 + n_3, 2^4, sqrt(n)$
 - b) n^2 , 2^n , $n\log_2 n$, $\log_2 n$, n^3
 - c) $nlog_2 n, n^8, n^2/log_2 n, (n^2 n + 1)$
 - d) $n!, 2^n, (n+1)!, 2^{2n}, n^n, n^{\log n}$

OR

- Q2) a) Prove by mathematical induction: "Tiling problem can always be solved".[6]
 - b) Explain in brief Aggregate analysis technique used in Amortized analysis.[4]
- Q3) Analyze Kruskal's algorithm of minimum cost spanning tree using greedy approach find out minimum cost spanning tree using Kruskal's algorithm for given graph.[10]


Edge	Cost	Edge	Cost
(a,b)	3	(c,d)	6
(a,f)	5	(c,f)	4
(a,e)	6	(f,d)	5
(b,c)	1	(f,e)	2
(b,f)	4	(e,d)	8

OR

- Q4) a) Solve the following instance of job sequencing problem using greedy approach. Let n = 6, profit p(1:6) = (30, 20, 15, 10, 5, 1) and deadlines d(1:6) = (4,2,2,1,4,3).
 - b) Analyze the time complexity of Strassen's matrix multiplication using divide and conquer strategy. [4]
- Q5) N=4 and (a1, a2, a3, a4) = (DAA, ITPM, OS, SP). Let p (1:4) = (3,3,1,1) and q(0:4) = (2,3,1,1,1). Compute & construct OBST for above value using dynamic programming. [10]

OR

Q6) a) Find the solution of the following travelling sales person problem using Dynamic approach.[6]

b) Compare dynamic programming with greedy approach. [4]

