Total No. of Questions : 12]	SEAT No.:
P3299	[Total No. of Pages : 3

[4959]-8

B.E. (Civil) (Semester - I)

ADVANCED GEOTECHNICAL ENGG. (Elective - I)

(2008 Pattern)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

ii)

PEP

iii) ER at rest.

- 1) Answer three questions from Section-I and three questions from Section-II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Your answers will be valued as a whole.
- 5) Use of logarithmic tables electronic pocket calculator is allowed & IS codes are not allowed.

SECTION - I

Q1) Explain the following: $[4 \times 4 = 16]$ a) PRA classification b) USCS c) ISCS d) A-line chart (Q2) a) Differentiate between Tetrahedral & Octahedral unit. [8] b) Explain the different soil structures. [8] Q3) a) Explain 'Modified Culman's Method. [10] b) Discuss: [7] i) **AEP**

<i>Q4</i>)	a)	Explain the steps for 'Anchored sheet pile design'.	[9]			
	b)	Derive expression for 'Ko'.	[8]			
Q 5)	a)	Explain 'Soil Anchers'.	[9]			
	b)	Discuss the use of 'Geosynthetics' in Geoenvironment.	[8]			
Q6)	a)	Explain 'Binguiet & Lec' theory.	[9]			
	b)	Discuss different functions of geosynthetics.	[8]			
	<u>SECTION - II</u>					
<i>Q7</i>)	Explain the following:		[4×4=16]			
	a)	Elastic Half space				
	b)	Spring analogy				
	c)	Krishna & Nagraj Method				
	d)	Barken's Method				
Q 8)	a)	Discuss the design criteria for impact type machines as per (Pt-II) 1966.	r IS-2974 [8]			
	b)	How will you determine spring constants in the field as laboratory.	well as in [8]			
Q9)	Ex	plain the following:				
	a)	Compaction pile.	[4]			
	b)	Vibrofloatation	[4]			
	c)	Stone column	[4]			
	d)	Sand drains	[5]			

Q10)	a)	Discuss different methods for grouting.	[9]	
	b)	Explain the stages for construction of Vibro-expanded pile.	[8]	
Q11)	a)	Explain 'Rheology' & discuss 'basic' & 'composite' models.	[9]	
	b)	Explain 'Creep' & 'Secondary Consolidation'.	[8]	
Q12) Explain the following:				
	a)	Hookeart Newtonian model	[5]	
	b)	Kelvin model	[4]	
	c)	Bingham's model	[4]	
	d)	Burger's model.	[4]	