P3444

[4959]-220

SEAT No. :

[Total No. of Pages : 5

B.E. (Computer) b-OPERATIONS RESEARCH (2008 Course) (Semester - II) (Elective - IV) (410451)

Time : 3 Hours] Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Use of Non programmable Calculator is allowed.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Figures to the Right indicate full marks.
- 6) Assume suitable data if necessary.

SECTION - I

Q1) a) Derive constraint equation for the following problem.

A paint company produces interior and exterior paints from two materials, M1 and M2. Following table gives basic data of the problem.

	Tons of Raw mater	Maximum daily	
	Exterior paint Interior Paint a		availability (tons)
Raw Material M1	6	4	24
Raw Material M2	1	2	6
Profit per ton (\$1000)	5	4	

A Market survey indicates that, the daily demand for interior paint can not exceed that of exterior paint by more than 1 ton & for interior paint 2 tons.

[Max. Marks : 100

[9]

b) Solve the following LP problem using simplex method.

[9]

Maximize $z = x_1 + 2x_2 + x_3$ Subject to constraints $2x_1 + x_2 - x_3 \le 2$ $-2x_1 + x_2 - 5x_3 \ge -6$ $4x_1 + x_2 + x_3 \le 6$, $x_1, x_2, x_3 \ge 0$ OR

Q2) a) Solving following problem graphically

Maximize $Z = 3x_1 + 5x_2$ subject to constraints $x_1 + 2x_2 \le 2000$ $x_1 + x_2 \le 1500$, $x_2 \le 600$ and $x_1, x_2 \ge 0$ [9]

b) State and explain applications of linear programming from different Industries point of view. [9]

Q3) a) Define probability. Explain with suitable examples [8]

- i) Addition law of probability
- ii) Conditional law of probability
- b) Consider the following pay off matrix of game [8]

	Player 1			
		Ι	II	III
Player 2	Ι	1	7	2
	II	6	2	7
	III	5	1	6

Reduce matrix to 2×2 matrix & obtain the value of game.

OR

[4959]-220

Q4) a)	Give the p	roof of Baye's theorem.	[8]
b)	Define fol	lowing w.r.t. Game theory.	[8]
	i) Chara	acteristics	
	ii) Maxi	ma - minima	
	iii) Sadd	le point	
	iv) Value	e of a game	
Q5) a)	Give a sur	nmary of various types of queueing models.	[8]
b)	error has a arrival of r	e Tester finds that the time spent on debugging and n exponential distribution with mean 30 min per me nodules is Poisson with an average of 10 modules p at is expected time per day?	odule. The
	How many	modules are there on average?	[8]

OR

Q6) a)	What is queueing s	system? Explain	queueing syste	ems transient state &
	steady state.			[8]

b) State and prove the arrival distribution theorem. [8]

SECTION - II

Q 7) a)	Describe following	Terminologies	with respect to job	sequencing. [9]
----------------	--------------------	---------------	---------------------	-----------------

- i) Processing order
- ii) Idle time on machine
- iii) Total Elapsed time
- iv) No passing rule

[4959]-220

3

b) Describe following Terminologies with respect to PERT chart. [9]

- i) Total float
- ii) Free float
- iii) Independent float
- iv) Dummy arrows in a network

OR

- *Q8*) a) Explain the algorithm of finding critical path. [9]
 - b) Solve following Job sequencing problem using Johnson's method to determine a sequence of 5 Jobs that will minimize the elasped time T. Processing time as follows [9]

Job	1	2	3	4	5
Machine A	5	1	9	3	10
Machine B	2	6	7	8	4

- *Q9)* a) Explain general and canonical form of Non-Linear programming problem. [8]
 - b) Define separable functions. Give one example of separable & non separable function. Explain separable programming problem. [8]

OR

- **Q10**(a) Explain how to obtain normality & orthogonality conditions. [8]
 - b) Explain Lagrangian method with respect to NLP. [8]

4

Q11) a)	Explain Mathematical model of Bellman's principal.	[8]
----------------	--	-----

b) Write a Note on Applications of dynamic programming. [8]

OR

- **Q12)**a) Describe recursive nature of computations in dynamic programming.[8]
 - b) Explain following concepts with respect to dynamic programming. [8]
 - i) Principle of optimality
 - ii) State
 - iii) Stage

x x x

[4959]-220